Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 3906-3918, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785510

RESUMEN

The high recurrence rate of cervical cancer is a leading cause of cancer deaths in women. 5-Fluorouracil (5-FU) is an antitumor drug used to treat many types of cancer, but its diminishing effectiveness and side effects limit its use. Norcantharidin (NCTD), a demethylated derivative of cantharidin, exhibits various biological activities. Here, we investigated whether NCTD could potentiate 5-FU to induce cervical cancer cell death. To assess the cell viability and synergistic effects of the drugs, cell counting kit-8 and colony formation assays were performed using HR-HPV-positive cervical cancer cell lines. Annexin V-FITC/PI staining and TUNEL assays were performed to confirm the induction of apoptosis. The synergistic effect of NCTD on the antitumor activity of 5-FU was analyzed using network pharmacology, molecular docking, and molecular dynamics simulations. Apoptosis-related proteins were examined using immunoblotting. The combination of NCTD and 5-FU was synergistic in cervical cancer cell lines. Network pharmacological analysis identified 10 common targets of NCTD and 5-FU for cervical cancer treatment. Molecular docking showed the strong binding affinity of both compounds with CA12, CASP9, and PTGS1. Molecular dynamics simulations showed that the complex system of both drugs with caspase-9 could be in a stable state. NCTD enhanced 5-FU-mediated cytotoxicity by activating apoptosis-related proteins. NCTD acts synergistically with 5-FU to inhibit cervical cancer cell proliferation. NCTD enhances 5-FU-induced apoptosis in cervical cancer cell lines via the caspase-dependent pathway.

2.
BMC Infect Dis ; 24(1): 333, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509457

RESUMEN

BACKGROUND: Anopheles stephensi is native to Southeast Asia and the Arabian Peninsula and has emerged as an effective and invasive malaria vector. Since invasion was reported in Djibouti in 2012, the global invasion range of An. stephensi has been expanding, and its high adaptability to the environment and the ongoing development of drug resistance have created new challenges for malaria control. Climate change is an important factor affecting the distribution and transfer of species, and understanding the distribution of An. stephensi is an important part of malaria control measures, including vector control. METHODS: In this study, we collected existing distribution data for An. stephensi, and based on the SSP1-2.6 future climate data, we used the Biomod2 package in R Studio through the use of multiple different model methods such as maximum entropy models (MAXENT) and random forest (RF) in this study to map the predicted global An. stephensi climatically suitable areas. RESULTS: According to the predictions of this study, some areas where there are no current records of An. stephensi, showed significant areas of climatically suitable for An. stephensi. In addition, the global climatically suitability areas for An. stephensi are expanding with global climate change, with some areas changing from unsuitable to suitable, suggesting a greater risk of invasion of An. stephensi in these areas, with the attendant possibility of a resurgence of malaria, as has been the case in Djibouti. CONCLUSIONS: This study provides evidence for the possible invasion and expansion of An. stephensi and serves as a reference for the optimization of targeted monitoring and control strategies for this malaria vector in potential invasion risk areas.


Asunto(s)
Anopheles , Malaria , Humanos , Animales , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores
3.
Infect Genet Evol ; 123: 105634, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950667

RESUMEN

BACKGROUND: Aedes albopictus is an important vector of chikungunya, dengue, yellow fever and Zika viruses. Insecticides are often the most effective tools for rapidly decreasing the density of vector populations, especially during arbovirus disease outbreaks. However, the intense use of insecticides, particularly pyrethroids, has led to the selection of resistant mosquito populations worldwide. Mutations in the voltage-gated sodium channel (VGSC) gene are one of the main drivers of insecticide resistance in Ae. albopictus and are also known as "knockdown resistance" (kdr) mutations. Knowledge about genetic mutations associated with insecticide resistance is a prerequisite for developing techniques for rapid resistance diagnosis. Here, we report studies on the origin and dispersion of kdr haplotypes in samples of Ae. albopictus from the Yangtze River Basin, China; METHODS: Here, we report the results of PCR genotyping of kdr mutations in 541 Ae. albopictus specimens from 22 sampling sites in 7 provinces and municipalities in the Yangtze River Basin. Partial DNA sequences of domain II and domain III of the VGSC gene were amplified. These DNA fragments were subsequently sequenced to discover the possible genetic mutations mediating knockdown resistance (kdr) to pyrethroids. The frequency and distribution of kdr mutations were assessed in 22 Ae. albopictus populations. Phylogenetic relationships among the haplotypes were used to infer whether the kdr mutations had a single or multiple origins; RESULTS: The kdr mutation at the 1016 locus had 2 alleles with 3 genotypes: V/V (73.38%), V/G (26.43%) and G/G (0.18%). The 1016G homozygous mutation was found in only one case in the CQSL strain in Chongqing, and no 1016G mutations were detected in the SHJD (Shanghai), NJDX (Jiangsu) or HBQN (Hubei) strains. A total of 1532 locus had two alleles and three genotypes, I/I (88.35%), I/T (8.50%) and T/T (3.14%). A total of 1534 locus had four alleles and six genotypes: F/F (49.35%), F/S (19.96%), F/C (1.48%) and F/L (0.18%); S/S (23.66%); and C/C (5.36%). Haplotypes with the F1534C mutation were found only in Ae. albopictus populations in Chongqing and Hubei, and C1534C was found only in three geographic strains in Chongqing. Haplotypes with the 1534S mutation were found only in Ae. albopictus populations in Sichuan and Shanghai. F1534L was found only in HBYC. The Ae. albopictus populations in Shanghai were more genetically differentiated from those in the other regions (except Sichuan), and the genetic differentiation between the populations in Chongqing and those in the middle-lower reaches of the Yangtze River (Huber, Jiangsu, Jiangxi, and Anhui) was lower. Shanghai and Sichuan displayed low haplotype diversity and low nucleotide diversity. Phylogenetic analysis and sequence comparison revealed that the 1016 locus was divided into three branches, with the Clade A and Clade B branches bearing the 1016 mutation occurring mostly in Jiangsu and the Clade C branch bearing the 1016 mutation occurring mostly in Chongqing, suggesting at least two origins for 1016G. IIIS6 phylogenetic analysis and sequence comparison revealed that F1534S, F1534C and I1532T can be divided into two branches, indicating that IIIS6 has two origins; CONCLUSIONS: Combined with the distribution of kdr mutations and the analysis of population genetics, we infer that besides the local selection of pyrethroid resistance mutations, dispersal and colonization of Ae. albopictus from other regions may explain why kdr mutations are present in some Ae. albopictus populations in the Yangtze River Basin.

4.
Sci Total Environ ; 924: 171594, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461989

RESUMEN

BACKGROUND: Recently, the effect of artificial light at night (ALAN) on the physiology and behavior of insects has gradually attracted the attention of researchers and has become a new research topic. Aedes albopictus is an important vector that poses a great public health risk. Further studies on the diapause of Ae. albopictus can provide a basis for new vector control, and it is also worth exploring whether the effect of ALAN on the diapause of Ae. albopictus will provide a reference for the prevention and control of infectious diseases mediated by Ae. albopictus. METHODS: In this study, we experimentally studied the diapause characteristics of different geographical strains of Ae. albopictus under the interference of ALAN, explored the effect of ALAN on the diapause of Ae. albopictus and explored the molecular mechanism of ALAN on the diapause process through RNA-seq. RESULTS: As seen from the diapause incidence, Ae. albopictus of the same geographic strain showed a lower diapause incidence when exposed to ALAN. The differentially expressed genes (DEGs) were mainly enriched in signaling and metabolism-related pathways in the parental females and diapause eggs of the ALAN group. CONCLUSIONS: ALAN inhibits Ae. albopictus diapause. In the short photoperiod induced diapause of Ae. albopictus in temperate strain Beijing and subtropical strain Guangzhou, the disturbance of ALAN reduced the egg diapause rate and increased the egg hatching rate of Ae. albopictus, and the disturbance of ALAN also shortened the life cycle of Ae. albopictus eggs after hatching.


Asunto(s)
Aedes , Diapausa , Animales , Femenino , Contaminación Lumínica , Aedes/fisiología , Fotoperiodo
5.
Trop Med Infect Dis ; 8(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37888599

RESUMEN

Invasive alien species are a growing threat to natural systems, the economy, and human health. Active surveillance and responses that readily suppress newly established colonies are effective actions to mitigate the noxious consequences of biological invasions. Aedes (Hulecoeteomyia) koreicus (Edwards), a mosquito species native to East Asia, has spread to parts of Europe and Central Asia since 2008. In the last decade, Ae. koreicus has been shown to be a competent vector for chikungunya virus and Dirofilaria immitis. However, information about the current and potential distribution of Ae. koreicus is limited. Therefore, to understand the changes in their global distribution and to contribute to the monitoring and control of Ae. koreicus, in this study, the MaxEnt model was used to predict and analyze the current suitable distribution area of Ae. koreicus in the world to provide effective information.

6.
Acta Trop ; 248: 107001, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37634685

RESUMEN

Aedes albopictus (Skuse) (Diptera: Culicidae) is one of the 100 most invasive species in the world and represents a significant threat to public health. The distribution of Ae. albopictus has been expanding rapidly due to increased international trade, population movement, global warming and accelerated urbanization. Consequently, it is very important to know the potential distribution area of Ae. albopictus in advance for early warning and control of its spread and invasion. We randomly selected 282 distribution sites from 27 provincial-level administrative regions in China, and used the GARP and MaxEnt models to analyze and predict the current and future distribution areas of Ae. albopictus in China. The results showed that the current range of Ae. albopictus in China covers most provinces such as Yunnan and Guizhou Provinces, and the distribution of Ae. albopictus in border provinces such as Tibet, Gansu and Jilin Provinces tend to expand westwards. In addition, the potential distribution area of Ae. albopictus in China will continue to expand westwards due to future climate change under the SSP126 climate scenario. Furthermore, the results of environmental factor filtering showed that temperature and precipitation had a large effect on the distribution probability of Ae. albopictus.


Asunto(s)
Aedes , Animales , Comercio , China , Internacionalidad , Factores Socioeconómicos , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA