Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 91: 92-104, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172986

RESUMEN

Highly efficient and sustainable conversion technologies to generate uniform sodalite (Na8(AlSiO4)6(OH)2) zeolite microspheres with low-grade waste natural diatomite as raw materials via a solution-mediated crystallization route were developed in the present study. The synthesis process can be considered as an in-situ zeolitization of diatomite precursor without involving any mesoscale template and any post-synthetic modification. The mass ratios of diatomite and AlCl3·6H2O have remarkable effect on the morphology, crystal structure and porosity of sodalite zeolite product. The preferred sodalite microspheres with uniform mesoporous of size 3.5-5.5 nm and large surface area of 162.5 m2/g exhibit well removal performance for heavy metal ions (Pb(II), Cd(II), Zn(II), and Cu(II)), with the highest adsorption abilities for Pb(II) ions of 365 mg/g. In addition, the effect of contact time, initial ion concentration, competitive adsorption and solution pH were evaluated. The removal performance results from synergistic effects of dominating cation-exchange and additional surface chemisorption. The study may broadly help unveil chemical control reactions of the zeolitization processes of diatomite, and thus facilitates the development of promising zeolite materials for the use in natural and engineered aquatic environments by recycling waste diatomite resources.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua/análisis , Zeolitas , Adsorción , Tierra de Diatomeas , Concentración de Iones de Hidrógeno , Microesferas
2.
J Environ Sci (China) ; 66: 358-367, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628105

RESUMEN

Niobium oxide nanowire-deposited carbon fiber (CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), UV-visible spectroscopy (UV-vis), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined. Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(VI) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area, abundant surface hydroxyl groups, and good UV-light absorption ability.


Asunto(s)
Carbono/química , Cromo/química , Nanocables/química , Niobio/química , Óxidos/química , Adsorción , Fibra de Carbono , Modelos Químicos , Procesos Fotoquímicos , Contaminantes Químicos del Agua
3.
J Environ Sci (China) ; 29: 71-81, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25766015

RESUMEN

Flower-, wire-, and sheet-like MnO2-deposited diatomites have been prepared using a hydrothermal method with Mn(Ac)2, KMnO4 and/or MnSO4 as Mn source and diatomite as support. Physical properties of the materials were characterized by means of numerous analytical techniques, and their behaviors in the adsorption of chromium(VI) were evaluated. It is shown that the MnO2-deposited diatomite samples with different morphologies possessed high surface areas and abundant surface hydroxyl groups (especially the wire-like MnO2/diatomite sample). The wire-like MnO2/diatomite sample showed the best performance in the removal of Cr(VI), giving the maximum Cr(VI) adsorption capacity of 101 mg/g.


Asunto(s)
Cromo/química , Tierra de Diatomeas/química , Compuestos de Manganeso/química , Óxidos/química , Contaminantes Químicos del Agua/química , Adsorción , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
4.
Materials (Basel) ; 16(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570044

RESUMEN

Tetracycline (TC) and arsenic contaminants are two main pollutants in aquaculture and livestock husbandry, and they have drawn worldwide attention. To address this issue, a novel N-doped carbon@magnesium silicate (CMS) was fabricated via a facile and low-cost hydrothermal route, adopting glucose and ammonia as C and N sources, respectively. The synergetic combination of carbon and magnesium silicate makes CMS possess a high surface area of 201 m2/g and abundant functional groups. Due to the abundant C- and N-containing functional groups and Mg-containing adsorptive sites, the maximum adsorption capacity values of CMS towards As(V) and TC are 498.75 mg/g and 1228.5 mg/g, respectively. The type of adsorption of As(V) and TC onto CMS is monolayer adsorption. An adsorption kinetic study revealed that the mass transfer and intraparticle process dominates the sorption rate of As(V) and TC adsorption onto CMS, respectively. Various functional groups synthetically participate in the adsorption process through complexion, π-π EDA interactions, and hydrogen bonds. This work provides a one-step, low-cost route to fabricate a N-doped carbonaceous adsorbent with a high surface area and abundant functional groups, which has great potential in the application of practical sewage treatment.

5.
J Colloid Interface Sci ; 652(Pt A): 218-230, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595439

RESUMEN

Design and fabrication of feasible remediation composites for total Cr (Cr(T)) removal is still challenging but urgently required. Herein, eco-friendly expanded vermiculite (VE) is integrated with a photoactive covalent organic framework (COF) polymer, in which photoinduced electrons of surface anchored COF can freely transfer to Cr(VI) for chemical reduction, and layered expanded VE allows ion exchange between resultant Cr(III) cations and interlayered K+, Ca2+, Mg2+, Na+, etc. The Cr(T) removal capacities of the surface-modified VE with important parameters (solution pH value, initial Cr(VI) concentration, etc.) are discussed extensively to understand how to select the best conditions for optimum Cr(T) removal performance. More interestingly, from a circular economy view point, spent Cr-loading VE-based waste can serve as a photocatalyst towards oxidation conversion of ciprofloxacin and NO gas subsequently. Explanations for different effects on physicochemical properties as well as catalytic activities of the reused Cr-loading waste are given. This strategy could provide valuable and promising contribution towards the development of sustainable low-cost mineral materials for Cr(T) removal. These findings also shed new light on the research of recycling spent photocatalyst for resource and reutilization.

6.
J Colloid Interface Sci ; 636: 245-254, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634394

RESUMEN

Fiber-shaped supercapacitor (FSSC) is considered as a promising energy storage device for wearable electronics due to its high power density and outstanding safety. However, it is still a great challenge to simultaneously achieve high specific capacitance especially at rapid charging/discharging rate and long-term cycling stability of fiber electrode in FSSC for practical application. Here, a ternary poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/reduced graphene oxide/polypyrrole (PEDOT:PSS/rGO/PPy) fiber electrode was constructed by in situ chemical polymerization of pyrrole on hydrothermally-assembled and acid-treated PEDOT:PSS/rGO (PG) hybrid hydrogel fiber. In this case, the porous PG hybrid fiber framework possesses combined advantages of highly-conductive PEDOT and flexible two-dimensional (2D) small-sized rGO sheets, which provides large surface area for the deposition of high-pseudocapacitance PPy, multiscale electrons/ions transport channels for the efficient utilization of active sites, and buffering layers to accommodate the structure change during electrochemical process. Attributed to the synergy, as-obtained ternary fiber electrode presents ultrahigh volumetric/areal specific capacitance (389 F cm-3 at 1 A cm-3 or 983 mF cm-2 at 2.5 mA cm-2) and outstanding rate performance (56 %, 1-20 A cm-3). In addition, 80 % preservation of initial capacitance after 8000 cycles for the corresponding FSSC also illustrates its greatly improved cycle stability compared with 64 % of binary PEDOT:PSS/PPy based counterpart. Accordingly, here proposed strategy promises a new opportunity to develop high-activity and durable electrode materials with potential applications in supercapacitor and beyond.

7.
J Colloid Interface Sci ; 622: 1008-1019, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35567949

RESUMEN

The spent adsorbent loaded by toxic metals is a solid hazardous waste which could cause significant secondary pollution due to potential possible additional release of metal ions. Therefore, the main subject is direct reutilization of spent adsorbents which can further economically and realistically offer new features, like recycling metal adsorbed, or formation of functional SiO2-based nanocomposites. The nanoporous structure and negative surface charges enable steel slag-derived amorphous calcium silicate hydrate (CSH) to retain effectively the incoming metal ions (e. g. Au3+, Ag+, Pd2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ce3+, Y3+, and Gd3+) by chemisorption. Sparked by natural carbonation 'weathering', which ultimately sequestrates atmospheric CO2 by alkaline silicate minerals to leach calcium from mineral matrix, the decalcification reactions of metal-bearing CSH results in successful recovery of noble metals (Ag, Au, Pd) upon NaOH etching the resultant SiO2 support. Further, SiO2-based heterostructures, containing nanocrystalline metals (e. g. Au0, Ag0, Pd0, Fe0, Co0, Ni0, Cu0, and Zn0) or rare-earth oxides (e. g. CeO2, Y2O3, and Gd2O3), are formed after reduction in H2/Ar (5 vol% H2) flow, which is also very important for the multipurpose immobilization of diverse hybrid materials on SiO2 surface (e. g. Cu0-Ag0@SiO2, Cu0-CeO2@SiO2, and Cu0-Ag0-CeO2@SiO2).


Asunto(s)
Nanocompuestos , Acero , Compuestos de Calcio , Dióxido de Carbono/química , Iones , Metales/química , Minerales , Silicatos/química , Dióxido de Silicio
8.
J Hazard Mater ; 422: 126951, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34449339

RESUMEN

An innovative method is created for transforming iron-rich RO phase (MgO0.239FeO0.761) on steel slag surface into nanostructured Mg0.04Fe2.96O4 layer. The phase change process is investigated, and it is found that salicylic acid modification and alkaline roasting procedures remarkably increase the specific surface area from 0.46 m2/g (raw steel slag) to 69.5 m2/g (Mg0.04Fe2.96O4), and the generation of Mg0.04Fe2.96O4 enhances the absorption of visible light and Cr(VI) conversion with 2-times increasement than raw steel slag. Surface complexation between H2C2O4 ligands and Fe metal moiety on Mg0.04Fe2.96O4 induces the intramolecular electron transfer under visible light irradiation based on a ligand-to-metal charge transfer mechanism, thus resulting in Cr(VI) photoreduction, and the catalytic efficiency is above 90% for Cr(VI) (40 mg/L) under inherent pH= 5.5 conditions. Moreover, recyclability tests based on magnetic separation show that the photoreactivity is closely related to Mg content of Mg0.04Fe2.96O4 layer where Mg leaching occurs and finally generates cubic spinel configuration Fe3O4. This work highlights the importance of surface functionalization in post-use phases of steel slag in which surface reactivity and application potential can be greatly altered by chemical exposure history and surface transformations. It also provides valuable references for studying the metastable state mechanism of magnesium ferrite photocatalysts.

9.
Inorg Chem ; 50(6): 2534-44, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21323353

RESUMEN

Three-dimensionally (3D) ordered macroporous (3DOM) iron oxides with nanovoids in the rhombohedrally crystallized macroporous walls were fabricated by adopting the dual-templating [Pluronic P123 and poly(methyl methacrylate) (PMMA) colloidal microspheres] strategy with ferric nitrate as the metal precursor in an ethanol or ethylene glycol and methanol mixed solution and after calcination at 550 °C. The possible formation mechanisms of such architectured materials were discussed. The physicochemical properties of the materials were characterized by means of techniques such as XRD, TGA/DSC, FT-IR, BET, HRSEM, HRTEM/SAED, UV-vis, XPS, and H(2)-TPR. The catalytic properties of the materials were also examined using toluene oxidation as a probe reaction. It is shown that 3DOM-structured α-Fe(2)O(3) without nanovoids in the macroporous walls was formed in the absence of P123 during the fabrication process, whereas the dual-templating strategy gave rise to α-Fe(2)O(3) materials that possessed high-quality 3DOM structures with the presence of nanovoids in the polycrystalline macropore walls and higher surface areas (32-46 m(2)/g). The surfactant P123 played a key role in the generation of nanovoids within the walls of the 3DOM-architectured iron oxides. There was the presence of multivalent iron ions and adsorbed oxygen species on the surface of each sample, with the trivalent iron ion and oxygen adspecies concentrations being different from sample to sample. The dual-templating fabricated iron oxide samples exhibited much better low-temperature reducibility than the bulk counterpart. The copresence of a 3DOM-structured skeleton and nanovoids in the macropore walls gave rise to a drop in the band-gap energy of iron oxide. The higher oxygen adspecies amounts, larger surface areas, better low-temperature reducibility, and unique nanovoid-containing 3DOM structures of the iron oxide materials accounted for their excellent catalytic performance in the oxidation of toluene.


Asunto(s)
Compuestos Férricos/química , Nanoestructuras/química , Poloxaleno/química , Polimetil Metacrilato/química , Química Física , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
10.
RSC Adv ; 9(7): 3816-3827, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35518093

RESUMEN

A general solution-phase strategy is developed to synthesize nanostructure niobates such as MnNb2O6, SnNb2O6 and ZnNb2O6 on natural mineral diatomite for water environmental remediation. (NH4)2C2O4 aqueous solution is the key to achieve a scalable and controllable synthesis of niobate/diatomite hybrid systems, which generates NH3·H2O for surface etching activation of diatomite, and H2C2O4 for complexation dissolution of Nb2O5, enabling the heterogeneous crystallization process to proceed with controllable growth kinetics. First principle calculations indicate that both niobium atom and niobium-oxygen species have the lowest adsorption energy on SiO2 surface, and then induce the nucleating process of Nb-O-Mn (or Zn, Sn) networks. Cr(vi), Fe(iii), and Pb(ii) ions are taken as target pollutants to evaluate the water-cleaning ability of the niobate-modified diatomite. Possible mechanisms for the photoreduction of Cr(vi), physical adsorption of Fe(OH)3 colloids, and chemisorption of Pb(ii) ions are proposed on the basis of experimentally investigations. The possibility of combining the advantages of natural mineral diatomite and nanostructured niobates provides a highly robust and potential material system with versatile functionalities of heavy metal ion removal, demonstrating great promise for a wide range of water purification.

11.
RSC Adv ; 8(3): 1621-1631, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35540873

RESUMEN

A novel rod-shaped MoO2/CaSO4 composite was prepared by using hexa-ammonium molybdate and flue gas desulfurization gypsum via a simple mixed-solvothermal route. In this composite, CaSO4 matrices are decorated with MoO2 nanoparticles, and non-structural mesopores are formed via particle packing. Moreover, it displays an excellent adsorption capability towards anionic congo red (CR) and cationic rhodamine B (RhB). The adsorption quantities per unit mass and removal efficiencies of the two dyes are significantly influenced by adsorbent dose, solution pH, and temperature. The adsorption isotherm data can be best fitted by the Langmuir model, and the calculated maximum adsorption quantities at 303.5 K are 853.54 mg g-1 for CR and 86.38 mg g-1 for RhB, respectively, which are superior to other common adsorbents. The corresponding kinetic data can be well matched with the pseudo-second-order model. Additionally, the CR adsorption is an exothermic process, while the RhB adsorption is an endothermic process. Both of them are multi-step chemisorption processes influenced by surface adsorption and intra-particle diffusion. This MoO2/CaSO4 composite can be applied as an alternative adsorbent for removing organic dyestuffs from printing and dyeing wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA