Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 198(4): 1215-1227, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23496340

RESUMEN

· Fusarium circinatum causes pitch canker disease in a wide range of pine trees, including Pinus radiata, with devastating economic consequences. · To assess the spatial and temporal dynamics of growth of this pathogen in radiata pine, we examined the process of infection using both real-time PCR to quantify fungal biomass inside the plant host, and confocal microscopy using a green fluorescent protein (GFP)-tagged strain of F. circinatum. · Pathogen growth exhibited three distinct phases: an initial exponential increase in fungal biomass, concomitant with pathogen colonization of the cortex and phloem; a slowdown in fungal growth coincident with sporulating hyphae deep within the host; and stabilization of the fungal biomass when the first wilting symptoms appeared. The number of resin ducts in the xylem was found to increase in response to infection and the fungus grew inside both constitutive and traumatic resin ducts. · These results indicate that conidiation may contribute to the spatial or temporal dissemination of the pathogen. Moreover, the present findings raise the intriguing possibility that the generation of traumatic resin ducts may be of more benefit to the fungus than to the plant.


Asunto(s)
Fusarium/crecimiento & desarrollo , Pinus/microbiología , Análisis Espacio-Temporal , Esporas Fúngicas/crecimiento & desarrollo , Xilema/microbiología , Biomasa , Recuento de Colonia Microbiana , Fusarium/citología , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología
2.
Mycorrhiza ; 23(8): 627-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23674120

RESUMEN

Mycorrhizal inoculation of conifer roots is a key strategy to optimize establishment and performance of forest tree species under both natural and cultivated conditions and also to mitigate transplantation shock. However, despite being a common practice, inoculation in outdoor nursery conditions has been poorly studied. Here, we have evaluated effectiveness of four fungal species (Lactarius deliciosus, Lactarius quieticolor, Pisolithus arhizus, and Suillus luteus) in the production of mycorrhizal Pinus pinaster seedlings in an outdoor commercial nursery and their ability to improve seedling physiology and field performance. All inoculated seedlings showed a significant increase in growth at the end of the nursery stage and these differences remained after 3 years of growth in the field. Differences observed in the content of malondialdehyde, total chlorophyll, carotenoids, anthocyanins, and phenolic compounds from needles of mycorrhizal and control seedlings may reflect a different sensitivity to photo-oxidative damage. We conclude that ectomycorrhizal inoculation improves adaptability to changeable growing conditions of an outdoor nursery and produces a higher quality nursery stock, thereby enhancing seedling performance after planting.


Asunto(s)
Basidiomycota/fisiología , Micorrizas/fisiología , Pinus/crecimiento & desarrollo , Pinus/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Simbiosis , Adaptación Fisiológica , Compuestos Orgánicos/análisis , Pinus/química , Pinus/fisiología , Desarrollo de la Planta , Plantones/química , Plantones/fisiología
3.
Plants (Basel) ; 10(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917372

RESUMEN

Improving fertilizer nitrogen (N) use efficiency is essential to increase crop productivity and avoid environmental damage. This study was conducted during four crop cycles of winter wheat under humid Mediterranean conditions (Araba, northern Spain). The effects of N-fertilization splitting and the application of the nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) as strategies to improve grain quality were examined. The hypothesis of this study was to test if the partial ammonium nutrition and the reduction of fertilizer losses presumably induced by the application of NIs can modify the grain gliadin and glutenin protein contents and the breadmaking quality (dough rheological properties). Among both NIs assayed, only DMPP showed a slight effect of decreasing the omega gliadin fraction, following splitting either two or three times, although this effect was dependent on the year and was not reflected in terms of dough extensibility. The slight decreases observed in grain quality in terms of dough strength and glutenin content induced by DMPP suggest that DMPSA is more promising in terms of maintaining grain quality. Nonetheless, these poor effects exerted by NI application on grain quality parameters did not lead to changes in the quality parameters defining the flour aptitudes for breadmaking.

4.
Front Plant Sci ; 9: 853, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988400

RESUMEN

This work explores whether the natural abundance of N isotopes technique could be used to understand the movement of N within the plant during vegetative and grain filling phases in wheat crop (Triticum aestivum L.) under different fertilizer management strategies. We focus on the effect of splitting the same N dose through a third late amendment at flag leaf stage (GS37) under humid Mediterranean conditions, where high spring precipitations can guarantee the incorporation of the lately applied N to the soil-plant system in an efficient way. The results are discussed in the context of agronomic parameters as N content, grain yield and quality, and show that further splitting the same N dose improves the wheat quality and induces a better nitrogen use efficiency. The nitrogen isotopic natural abundance technique shows that N remobilization is a discriminating process that leads to an impoverishment in 15N of senescent leaves and grain itself. This technique also reflects the more efficient use of N resources (fertilizer and native soil-N) when plants receive a late N amendment.

5.
Photosynth Res ; 78(2): 161-73, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-16245047

RESUMEN

The photorespiration cycle plays an important role in avoiding carbon drainage from the Calvin cycle and in protecting plants from photoinhibition. The role of photorespiration is frequently underestimated in C(4) plants, since these are characterized by low photorespiration rates. The aim of this work was to study the relationship between CO(2) assimilation, PS II photochemistry and the xanthophyll cycle when the photorespiratory cycle is disrupted in Zea mays L. To this end, the photorespiration inhibitor phosphinothricin (PPT) was applied individually or together with the photorespiratory C(2) acids, glycolate and glyoxylate to maize leaves. Application of PPT alone led to the inhibition of CO(2) assimilation. Moreover, feeding with glycolate or glyoxylate enhanced the effect of PPT on CO(2) assimilation. Our results confirm that the avoidance of the accumulation of the photorespiratory metabolites glycolate, glyoxylate or phosphoglycolate, is of vital importance for coordinated functioning between the glycolate pathway and CO(2) assimilation. Relatively early changes in PS II photochemistry also took place when the photorespiratory cycle was interrupted. Thus, fluorescence photochemical quenching (qP) was slightly reduced (10%) due to the application of PPT together with glycolate or glyoxylate. A decrease in the efficiency of excitation-energy capture by open PS II reaction centres (F'v/F'm) and an increase in thermal energy dissipation (non-photochemical quenching, NPQ) were also measured. These observations are consistent with a limitation of activity of the Calvin cycle and a subsequent lower demand for reduction equivalents. The increase in NPQ is discussed on the basis of changes in the xanthophyll cycle in maize, which seem to provide a limited protective role to avoid photoinhibition when the glycolate pathway is blocked. We conclude that C(2) photorespiratory acids can act as physiological regulators between the photorespiratory pathway and the Calvin cycle in maize.

6.
Mycorrhiza ; 14(1): 11-8, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14513336

RESUMEN

Three ectomycorrhizal (ECM) isolates of Rhizopogon luteolus, R. roseolus and Scleroderma citrinum were found to differ markedly in their in vitro tolerance to adverse conditions limiting fungal growth, i.e. water availability, pH and heavy metal pollution. S. citrinum was the most sensitive, R. luteolus intermediate and R. roseolus the most tolerant species. Pinus radiata D. Don seedlings were inoculated in the laboratory and in a containerised seedling nursery with spore suspensions of the three ECM species. Colonisation percentage was considerably lower under nursery conditions, probably due to competition by native fungi. The effects of nursery ECM inoculation on seedling growth depended on the fungal species. Only R. roseolus-colonised plants showed a significantly higher shoot growth than non-mycorrhizal plants. All three fungi induced significantly higher root dry weights relative to control plants. Despite the low mycorrhizal colonisation, mycorrhization with all three species improved the physiological status of nursery-grown seedlings, e.g. enhanced root enzyme activity, shoot nutrient and pigment content, net photosynthesis rate and water use efficiency. Of the three fungal species, R. roseolus was the most effective; this species was also the most adaptable and showed the greatest range of tolerance to adverse environmental conditions in pure culture. It is, therefore, proposed as a promising fungal species for ECM inoculation of P. radiata in the nursery.


Asunto(s)
Basidiomycota/fisiología , Micorrizas/fisiología , Pinus/microbiología , Concentración de Iones de Hidrógeno , Metales Pesados/metabolismo , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Contaminantes del Suelo/metabolismo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA