Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(17): 4690-4712.e30, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39142281

RESUMEN

Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.


Asunto(s)
Potenciales de Acción , Dinoprostona , Células de Schwann , Células Receptoras Sensoriales , Animales , Células de Schwann/metabolismo , Dinoprostona/metabolismo , Ratones , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 119(44): e2210114119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279441

RESUMEN

American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX "recognition code" enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ∼140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins.


Asunto(s)
Neurotoxinas , Saxitoxina , Animales , Saxitoxina/genética , Ligandos , Guanidina , Proteínas Portadoras/metabolismo , Rana catesbeiana
3.
J Am Chem Soc ; 146(33): 23067-23074, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39134028

RESUMEN

A new class of Ru-sulfonamidate precatalysts for sp3 C-H hydroxylation is described along with a versatile process for assembling unique heteroleptic Ru(II) complexes. The latter has enabled structure-performance studies to identify an optimal precatalyst, 2h, bearing one 4,4'-di-tert-butylbipyridine (dtbpy) and one pyridylsulfonamidate ligand. Single-crystal X-ray analysis confirmed the structure and stereochemistry of this adduct. Catalytic hydroxylation reactions are conveniently performed in an aqueous, biphasic solvent mixture with 1 mol % 2h and ceric ammonium nitrate as the terminal oxidant and deliver oxidized products in yields ranging from 37 to 90%. A comparative mechanistic investigation of 2h against a related homoleptic precatalyst, [Ru(dtbpy)2(MeCN)2](OTf)2, convincingly establishes that the former generates one or more surprisingly long-lived active species under the reaction conditions, thus accounting for the high turnover numbers. Structure-performance, kinetics, mass spectrometric, and electrochemical analyses reveal that ligand oxidation is a prerequisite for catalyst activation. Our findings sharply contrast a large body of prior art showing that ligand oxidation is detrimental to catalyst function. We expect these results to stimulate future innovations in C-H oxidation research.

4.
Chembiochem ; 24(22): e202300493, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37746898

RESUMEN

Voltage-gated sodium ion channels (NaV s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of NaV s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple NaV isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na+ conductance when applied to recombinant NaV s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of NaV s expressed in the plasma membranes of cells.


Asunto(s)
Saxitoxina , Canales de Sodio Activados por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo , Isoformas de Proteínas/metabolismo , Neuronas/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33277431

RESUMEN

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Células CHO , Canales de Cloruro CLC-2 , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cricetulus , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Hipocampo/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
6.
Chembiochem ; 23(13): e202100625, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35315190

RESUMEN

The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.


Asunto(s)
Nocicepción , Canales de Sodio Activados por Voltaje , Humanos , Dolor , Canales de Sodio Activados por Voltaje/metabolismo
7.
J Org Chem ; 86(24): 17790-17803, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34874731

RESUMEN

Saxitoxin (STX) is the archetype of a large family (>50) of architecturally distinct, bisguanidinium natural products. Among this collection of isolates, two members, 11-saxitoxinethanoic acid (11-SEA) and zetekitoxin AB (ZTX), are unique, bearing carbon substitution at C11. A desire to efficiently access these compounds has motivated the development of new tactical approaches to a late-stage C11-ketone intermediate 26, designed to enable C-C bond formation using any one of a number of possible reaction technologies. Highlights of the synthesis of 26 include a metal-free, silylpyrrole oxidative dearomatization reaction and a vinylsilane epoxidation-rearrangement cascade to generate the requisite ketone. Nucleophilic addition to 26 makes possible the preparation of unnatural C11-substituted STXs. Olefination of this ketone is also demonstrated and, when followed by a redox-neutral isomerization reaction, affords 11-SEA.


Asunto(s)
Productos Biológicos , Saxitoxina , Oxidación-Reducción , Saxitoxina/análogos & derivados
8.
Proc Natl Acad Sci U S A ; 115(21): E4900-E4909, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29669921

RESUMEN

CLC proteins are a ubiquitously expressed family of chloride-selective ion channels and transporters. A dearth of pharmacological tools for modulating CLC gating and ion conduction limits investigations aimed at understanding CLC structure/function and physiology. Herein, we describe the design, synthesis, and evaluation of a collection of N-arylated benzimidazole derivatives (BIMs), one of which (BIM1) shows unparalleled (>20-fold) selectivity for CLC-Ka over CLC-Kb, the two most closely related human CLC homologs. Computational docking to a CLC-Ka homology model has identified a BIM1 binding site on the extracellular face of the protein near the chloride permeation pathway in a region previously identified as a binding site for other less selective inhibitors. Results from site-directed mutagenesis experiments are consistent with predictions of this docking model. The residue at position 68 is 1 of only ∼20 extracellular residues that differ between CLC-Ka and CLC-Kb. Mutation of this residue in CLC-Ka and CLC-Kb (N68D and D68N, respectively) reverses the preference of BIM1 for CLC-Ka over CLC-Kb, thus showing the critical role of residue 68 in establishing BIM1 selectivity. Molecular docking studies together with results from structure-activity relationship studies with 19 BIM derivatives give insight into the increased selectivity of BIM1 compared with other inhibitors and identify strategies for further developing this class of compounds.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Cloruros/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Electrofisiología , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Relación Estructura-Actividad , Xenopus laevis
9.
J Am Chem Soc ; 141(2): 972-980, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30601662

RESUMEN

We have recently disclosed [(dtbpy)2RuCl2] as an effective precatalyst for chemoselective C-H hydroxylation of C(sp3)-H bonds and have noted a marked disparity in reaction performance between 4,4'-di- tert-butyl-2,2'-bipyridine (dtbpy)- and 2,2'-bipyridine (bpy)-derived complexes. A desire to understand the origin of this difference and to further advance this catalytic method has motivated the comprehensive mechanistic investigation described herein. Details of this reaction have been unveiled through evaluation of ligand structure-activity relationships, electrochemical and kinetic studies, and pressurized sample infusion high-resolution mass spectrometry (PSI-MS). Salient findings from this investigation include the identification of more than one active oxidant and three disparate mechanisms for catalyst decomposition/arrest. Catalyst efficiency, as measured by turnover number, has a strong inverse correlation with the rate and extent of ligand dissociation, which is dependent on the identity of bipyridyl 4,4'-substituent groups. Dissociated bipyridyl ligand is oxidized to mono- and bis- N-oxide species under the reaction conditions, the former of which is found to act as a potent catalyst poison, yielding a catalytically inactive tris-ligated [Ru(dtbpy)2(dtbpy N-oxide)]2+ complex. Insights gained through this work highlight the power of PSI-MS for studies of complex reaction processes and are guiding ongoing efforts to develop high-performance, next-generation catalyst systems for C-H hydroxylation.

10.
Proc Natl Acad Sci U S A ; 113(21): 5856-61, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162340

RESUMEN

Improper function of voltage-gated sodium channels (NaVs), obligatory membrane proteins for bioelectrical signaling, has been linked to a number of human pathologies. Small-molecule agents that target NaVs hold considerable promise for treatment of chronic disease. Absent a comprehensive understanding of channel structure, the challenge of designing selective agents to modulate the activity of NaV subtypes is formidable. We have endeavored to gain insight into the 3D architecture of the outer vestibule of NaV through a systematic structure-activity relationship (SAR) study involving the bis-guanidinium toxin saxitoxin (STX), modified saxitoxins, and protein mutagenesis. Mutant cycle analysis has led to the identification of an acetylated variant of STX with unprecedented, low-nanomolar affinity for human NaV1.7 (hNaV1.7), a channel subtype that has been implicated in pain perception. A revised toxin-receptor binding model is presented, which is consistent with the large body of SAR data that we have obtained. This new model is expected to facilitate subsequent efforts to design isoform-selective NaV inhibitors.


Asunto(s)
Proteínas Musculares/química , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Proteínas Recombinantes/química , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/química , Animales , Sitios de Unión , Células CHO , Cricetulus , Diseño de Fármacos , Expresión Génica , Células HEK293 , Humanos , Cinética , Simulación del Acoplamiento Molecular , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saxitoxina/química , Bloqueadores de los Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Tetrodotoxina/química , Tetrodotoxina/farmacología
11.
Angew Chem Int Ed Engl ; 58(6): 1689-1693, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30488599

RESUMEN

The bis-guanidinium toxins are a collection of natural products that display nanomolar potency against select isoforms of eukaryotic voltage-gated Na+ ion channels. We describe a synthetic strategy that enables access to four of these poisons, namely 11-saxitoxinethanoic acid, C13-acetoxy saxitoxin, decarbamoyl saxitoxin, and saxitoxin. Highlights of this work include an unusual Mislow-Evans rearrangement and a late-stage Stille ketene acetal coupling. The IC50 value of 11-saxitoxinethanoic acid was measured against rat NaV 1.4, and found to be 17.0 nm, similar to those of the sulfated toxins gonyautoxin II and III.


Asunto(s)
Productos Biológicos/síntesis química , Saxitoxina/análogos & derivados , Saxitoxina/síntesis química , Productos Biológicos/química , Estructura Molecular , Saxitoxina/química , Estereoisomerismo
12.
J Am Chem Soc ; 140(37): 11863-11869, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30192526

RESUMEN

The remarkable degree of synthetic selectivity found in Nature is exemplified by the biosynthesis of paralytic shellfish toxins such as saxitoxin. The polycyclic core shared by saxitoxin and its relatives is assembled and subsequently elaborated through the installation of hydroxyl groups with exquisite precision that is not possible to replicate with traditional synthetic methods. Here, we report the identification of the enzymes that carry out a subset of C-H functionalizations involved in paralytic shellfish toxin biosynthesis. We have shown that three Rieske oxygenases mediate hydroxylation reactions with perfect site- and stereoselectivity. Specifically, the Rieske oxygenase SxtT is responsible for selective hydroxylation of a tricyclic precursor to the famous natural product saxitoxin, and a second Rieske oxygenase, GxtA, selectively hydroxylates saxitoxin to access the oxidation pattern present in gonyautoxin natural products. Unexpectedly, a third Rieske oxygenase, SxtH, does not hydroxylate tricyclic intermediates, but rather a linear substrate prior to tricycle formation, rewriting the biosynthetic route to paralytic shellfish toxins. Characterization of SxtT, SxtH, and GxtA is the first demonstration of enzymes carrying out C-H hydroxylation reactions in paralytic shellfish toxin biosynthesis. Additionally, the reactions of these oxygenases with a suite of saxitoxin-related molecules are reported, highlighting the substrate promiscuity of these catalysts and the potential for their application in the synthesis of natural and unnatural saxitoxin congeners.


Asunto(s)
Toxinas Marinas/biosíntesis , Mariscos , Animales , Hidroxilación , Toxinas Marinas/química , Modelos Moleculares , Estructura Molecular
13.
J Org Chem ; 83(6): 3023-3033, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29313681

RESUMEN

The desire for maximally efficient transformations in complex molecule synthesis has contributed to a surge of interest in C-H functionalization methods development in recent years. In contrast to the steady stream of methodological reports, however, there are noticeably fewer studies comparing the efficacies of different C-H functionalization protocols on a single structurally intricate substrate. Recognizing the importance of heteroatom incorporation in complex molecule synthesis, this report discloses a comparative examination of diverse strategies for C-O, C-N, and C-X bond formation through late-stage C-H oxidation of the tricyclic cyanthiwigin natural product core. Methods for allylic C-H acetoxylation, tertiary C-H hydroxylation, tertiary C-H amination, tertiary C-H azidation, and secondary C-H halogenation are explored. These efforts highlight the robustness and selectivities of many well-established protocols for C-H oxidation when applied to a complex molecular framework, and the findings are relevant to chemists aiming to employ such strategies in the context of chemical synthesis.


Asunto(s)
Productos Biológicos/química , Carbono/química , Diterpenos/química , Hidrógeno/química , Alquenos/química , Catálisis , Hidroxilación , Oxidación-Reducción
14.
J Org Chem ; 83(13): 7121-7134, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29708344

RESUMEN

A strategy enabled by C-H and alkene amination technologies for synthesizing the aminocyclitol natural product, pactamycin, is disclosed. This work features two disparate approaches for assembling the five-membered ring core of the target, the first of which utilizes acyl anion catalysis and a second involving ß-ketoester aerobic hydroxylation. Installation of the C3-N bond, one of three contiguous nitrogen centers, is made possible through Rh-catalyzed allylic C-H amination of a sulfamate ester. Subsequent efforts are presented to introduce the C1,C2 cis-diamino moiety en route to pactamycin, including carbamate-mediated alkene aziridination. In the course of these studies, assembly of the core of C2- epi-pactamycate, which bears the carbon skeleton and all of the requisite nitrogen and oxygen functional groups found in the natural product, has been achieved.

15.
Angew Chem Int Ed Engl ; 57(18): 4956-4959, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29484792

RESUMEN

A general and operationally convenient method for intermolecular amination of C(sp3 )-H bonds is described. This technology allows for efficient functionalization of complex molecules, including numerous pharmaceutical targets. The combination of pivalonitrile as a solvent, Al2 O3 as an additive, and phenyl sulfamate as a nitrogen source affords differential reaction performance and substrate scope. Mechanistic data strongly implicate a pathway for catalyst decomposition that initiates with solvent oxidation, thus providing rationale for the marked influence of pivalonitrile on this reaction process.

16.
J Am Chem Soc ; 139(28): 9503-9506, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28660763

RESUMEN

The identification, optimization, and evaluation of a new catalytic protocol for sp3 C-H hydroxylation is described. Reactions are performed in aqueous acid using a bis(bipyridine)Ru catalyst to enable oxidation of substrates possessing basic amine functional groups. Tertiary and benzylic C-H hydroxylation is strongly favored over N-oxidation for numerous amine derivatives. With terpene-derived substrates, similar trends in reactivity toward tertiary and benzylic C-H bonds are observed. Hydroxylation of chiral tertiary centers is enantiospecific in spite of the ionizing strength of the reaction medium. Preliminary kinetics experiments show a marked difference in reactivity between isomeric cis- and trans-Ru catalysts suggesting that the catalyst is configurationally stable under the reaction conditions.

17.
J Am Chem Soc ; 138(18): 5994-6001, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27138488

RESUMEN

The paralytic shellfish poisons are a collection of guanidine-containing natural products that are biosynthesized by prokaryote and eukaryote marine organisms. These compounds bind and inhibit isoforms of the mammalian voltage-gated Na(+) ion channel at concentrations ranging from 10(-11) to 10(-5) M. Here, we describe the de novo synthesis of three paralytic shellfish poisons, gonyautoxin 2, gonyautoxin 3, and 11,11-dihydroxysaxitoxin. Key steps include a diastereoselective Pictet-Spengler reaction and an intramolecular amination of an N-guanidyl pyrrole by a sulfonyl guanidine. The IC50's of GTX 2, GTX 3, and 11,11-dhSTX have been measured against rat NaV1.4, and are found to be 22 nM, 15 nM, and 2.2 µM, respectively.


Asunto(s)
Toxinas Marinas/síntesis química , Saxitoxina/análogos & derivados , Saxitoxina/síntesis química , Aminas/química , Animales , Ciclización , Toxinas Marinas/farmacología , Proteínas Musculares/antagonistas & inhibidores , Pirroles/química , Ratas , Saxitoxina/farmacología , Mariscos , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio , Estereoisomerismo
19.
J Am Chem Soc ; 138(7): 2327-41, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26820386

RESUMEN

Dirhodium-catalyzed C-H amination is hypothesized to proceed via Rh2-nitrene intermediates in either the Rh2(II,II) or Rh2(II,III) redox state. Herein, we report joint theoretical and experimental studies of the ground electronic state (GES), redox potentials, and C-H amination of [Rh2(II,III)(O2CCH3)4(L)n](+) (1_L) (L = none, Cl(-), and H2O), [Rh2(esp)2](+) (2), and Rh2(espn)2Cl (3) (esp = α,α,α',α'-tetramethyl-1,3-benzenedipropanoate and espn = α,α,α',α'-tetramethyl-1,3-benzenedipropanamidate). CASSCF calculations on 1_L yield a wave function with two closely weighted configurations, (δ*)(2)(π1*)(2)(π2*)(1) and (δ*)(2)(π1*)(1)(π2*)(2), consistent with reported EPR g values [Chem. Phys. Lett. 1986, 130, 20-23]. In contrast, EPR spectra of 2 show g values consistent with the DFT-computed (π*)(4)(δ*)(1) GES. EPR spectra and Cl K-edge XAS for 3 are consistent with a (π*)(4)(δ*)(1) GES, as supported by DFT. Nitrene intermediates 2N_L and 3N_L are also examined by DFT (the nitrene is an NSO3R species). DFT calculations suggest a doublet GES for 2N_L and a quartet GES for 3N_L. CASSCF calculations describe the GES of 2N as Rh2(II,II) with a coordinated nitrene radical cation, (π*)(4)(δ*)(2)(π(nitrene,1))(1)(π(nitrene,2))(0). Conversely, the GES of 3N is Rh2(II,III) with a coordinated triplet nitrene, (π*)(4)(δ*)(1)(π(nitrene,1))(1)(π(nitrene,2))(1). Quartet transition states ((4)TSs) are found to react via a stepwise radical mechanism, whereas (2)TSs are found to react via a concerted mechanism that is lower in energy compared to (4)TSs for both 2N_L and 3N_L. The experimental (determined by intramolecular competition) and (2)TS-calculated kinetic isotopic effect (KIE) shows a KIE ∼ 3 for both 2N and 3N, which is consistent with a concerted mechanism.


Asunto(s)
Azetidinas/química , Ácidos Carboxílicos/química , Quelantes/química , Electrones , Iminas/química , Compuestos Organometálicos/química , Rodio/química , Aminación , Catálisis , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxidación-Reducción
20.
Proc Natl Acad Sci U S A ; 109(44): 18102-7, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23077250

RESUMEN

Human nociceptive voltage-gated sodium channel (Na(v)1.7), a target of significant interest for the development of antinociceptive agents, is blocked by low nanomolar concentrations of (-)-tetrodotoxin(TTX) but not (+)-saxitoxin (STX) and (+)-gonyautoxin-III (GTX-III). These findings question the long-accepted view that the 1.7 isoform is both tetrodotoxin- and saxitoxin-sensitive and identify the outer pore region of the channel as a possible target for the design of Na(v)1.7-selective inhibitors. Single- and double-point amino acid mutagenesis studies along with whole-cell electrophysiology recordings establish two domain III residues (T1398 and I1399), which occur as methionine and aspartate in other Na(v) isoforms, as critical determinants of STX and gonyautoxin-III binding affinity. An advanced homology model of the Na(v) pore region is used to provide a structural rationalization for these surprising results.


Asunto(s)
Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Saxitoxina/toxicidad , Tetrodotoxina/toxicidad , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Humanos , Metionina/química , Metionina/metabolismo , Mutagénesis , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA