Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Environ Sci (China) ; 137: 237-244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37980011

RESUMEN

Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.


Asunto(s)
Arsénico , Pseudomonas putida , Arseniatos , Arsénico/análisis , Pseudomonas putida/genética , Biodegradación Ambiental , Suelo
2.
New Phytol ; 234(6): 1977-1986, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34921429

RESUMEN

Plants form complex interaction networks with diverse microbiomes in the environment, and the intricate interplay between plants and their associated microbiomes can greatly influence ecosystem processes and functions. The phyllosphere, the aerial part of the plant, provides a unique habitat for diverse microbes, and in return the phyllosphere microbiome greatly affects plant performance. As an open system, the phyllosphere is subjected to environmental perturbations, including global change, which will impact the crosstalk between plants and their microbiomes. In this review, we aim to provide a synthesis of current knowledge of the complex interactions between plants and the phyllosphere microbiome under global changes and to identify future priority areas of research on this topic.


Asunto(s)
Microbiota , Plantas
3.
Environ Sci Technol ; 55(17): 11784-11794, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34375092

RESUMEN

Fertilization is known to affect antibiotic-resistance gene (ARG) patterns in the soil, even in the gut of soil fauna. Here, we conducted a microcosm experiment to investigate differences of effects of different fertilizers on collembolan gut ARG profiles and to further explore the microecological mechanisms that cause the differences. Although fertilization increased the abundance of ARGs, compared with the conventional manure, the application of antibiotic-reduced manure and vermicompost all curbed the enrichment of ARGs in the gut of collembolans. The results of the structural equation model revealed that changes in the microbial community caused by fertilizations have an important contribution to variations in the ARGs. We further found that the fungal community, like bacterial community, is also an important driver of ARG patterns in the collembolan gut. The fungi belonging to Dokmaia and Talaromyces were significantly correlated with the ARGs in the gut of collembolans. In addition, the application of vermicompost significantly increased the abundance of agricultural beneficial microbes in the soil environment. Together, our results provide an insight into the role of the fungal community on ARG patterns in the soil collembolan gut microbiome and highlight environmental friendliness of vermicomposting.


Asunto(s)
Artrópodos/microbiología , Microbioma Gastrointestinal , Micobioma , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Genes Bacterianos , Estiércol , Suelo , Microbiología del Suelo
4.
J Hazard Mater ; 466: 133567, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271874

RESUMEN

Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.


Asunto(s)
Arsénico , Contaminantes Ambientales , Microbiota , Contaminantes del Suelo , Cadmio/metabolismo , Arsénico/toxicidad , Arsénico/análisis , Suelo , Multiómica , Microbiota/genética , Contaminantes Ambientales/análisis , Productos Agrícolas/metabolismo , Reacción en Cadena de la Polimerasa , Contaminantes del Suelo/metabolismo
5.
Environ Int ; 185: 108496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359549

RESUMEN

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Edulcorantes/toxicidad , Edulcorantes/análisis , Edulcorantes/metabolismo , Suelo , Contaminantes Químicos del Agua/análisis , Ciclamatos/análisis , Amino Azúcares , Nucleótidos
6.
Huan Jing Ke Xue ; 45(5): 2952-2961, 2024 May 08.
Artículo en Zh | MEDLINE | ID: mdl-38629556

RESUMEN

To explore the pollution characteristics and source of soil heavy metal in a coal mine area near the Yellow River in Shandong, the geo-accumulation index method and improved Nemerow pollution index method were used to evaluate the pollution characteristics of soil heavy metal. The absolute principal component-multiple linear regression model (APCS-MLR) was used to quantitatively analyze the source of soil heavy metal, and the spatial distribution of Hg and Cd were analyzed using the Kriging spatial difference method in ArcGIS. The result accuracy of the APCS-MLR model was further verified. The results showed that:The measured contents of soil heavy metal Cu, Zn, Pb, Cr, Cd, Ni, As, and Hg all exceeded the normal site, among which, Hg and Cd exceeded the background values of soil elements in Shandong. The coefficient of variation (CV) of Hg was higher than 0.500, indicating significant spatial heterogeneity. Moreover, the correlation between Hg and other heavy metals was generally low, and the possibility of the same pollution source was small. The results of the geo-accumulation index and improved Nemerow pollution index showed that the overall soil heavy metal pollution was at a moderate level, among which the Hg pollution level was the highest, and its maximum value was at a slanted-heavy pollution level; Cu, Cd, and As in soil caused local pollution, which were at a slanted-light pollution level. Soil heavy metal pollution was closely related to mining activities, rehabilitation, and engineering construction in the coal mine area. The two major pollution sources of soil heavy metal in the research area were the compound source of the parent material and industrial and mining transportation sources (known source 1) and the compound source of atmospheric sedimentation and coal production (known source 2), the contribution rates of which were 76.705% and 16.171%, respectively. The results of the APCS-MLR model were shown to be reliable by analyzing the content distribution of Hg and Cd using the Kriging space difference mode. This research can provide scientific basis for the precise control and improvement of soil heavy metal pollution, ensuring the safety of food and agricultural products and improving the quality of the ecological environment in the coal mine area in the Shandong section of the Yellow River Basin.

7.
Microbiol Spectr ; 11(1): e0437122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625666

RESUMEN

Wild rice has been demonstrated to possess enriched genetic diversity and multiple valuable traits involved in disease/pest resistance and abiotic stress tolerance, which provides a potential resource for sustainable agriculture. However, unlike the plant compartments such as rhizosphere, the structure and assembly of phyllosphere microbial communities of wild rice remain largely unexplored. Through amplicon sequencing, this study compared the phyllosphere bacterial and fungal communities of wild rice and its neighboring cultivated rice. The core phyllosphere microbial taxa of both wild and cultivated rice are dominated with Pantoea, Methylobacterium, Nigrospora, and Papiliotrema, which are potentially beneficial to rice growth and health. Compared to the cultivated rice, Methylobacterium, Sphingomonas, Phaeosphaeria, and Khuskia were significantly enriched in the wild rice phyllosphere. The potentially nitrogen-fixing Methylobacterium is the dominated wild-enriched microbe; Sphingomonas is the hub taxon of wild rice networks. In addition, the microbiota of wild rice was more governed by deterministic assembly with a more complicated and stable community network than the cultivated rice. Our study provides a list of the beneficial microbes in the wild rice phyllosphere and reveals the microbial divergence between wild rice and cultivated rice in the original habitats, which highlights the potential selective role of wild rice in recruiting specific microbiomes for enhancing crop performance and promoting sustainable food production. IMPORTANCE Plant microbiota are being considered a lever to increase the sustainability of food production under a changing climate. In particular, the microbiomes associated with ancestors of modern cultivars have the potential to support their domesticated cultivars. However, few efforts have been devoted to studying the biodiversity and functions of microbial communities in the native habitats of ancestors of modern crop species. This study provides a list of the beneficial microbes in the wild rice phyllosphere and explores the microbial interaction patterns and the functional profiles of wild rice. This information could be useful for the future utilization of the plant microbiome to enhance crop performance and sustainability, especially in the framework of sustainable agroecosystems.


Asunto(s)
Basidiomycota , Microbiota , Micobioma , Oryza , Oryza/microbiología , Bacterias/genética
8.
mSystems ; 8(3): e0014323, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246882

RESUMEN

Bathyarchaeota, known as key participants of global elements cycling, is highly abundant and diverse in the sedimentary environments. Bathyarchaeota has been the research spotlight on sedimentary microbiology; however, its distribution in arable soils is far from understanding. Paddy soil is a habitat similar to freshwater sediments, while the distribution and composition of Bathyarchaeota in paddy soils have largely been overlooked. In this study, we collected 342 in situ paddy soil sequencing data worldwide to illuminate the distribution patterns of Bathyarchaeota and explore their potential ecological functions in paddy soils. The results showed that Bathyarchaeota is the dominant archaeal lineage, and Bathy-6 is the most predominant subgroup in paddy soils. Based on random forest analysis and construction of a multivariate regression tree, the mean annual precipitation and mean annual temperature are identified as the factors significantly influencing the abundance and composition of Bathyarchaeota in paddy soils. Bathy-6 was abundant in temperate environments, while other subgroups were more abundant in sites with higher rainfall. There are highly frequent associations between Bathyarchaeota and methanogens and ammonia-oxidizing archaea. The interactions between Bathyarchaeota and microorganisms involved in carbon and nitrogen metabolism imply a potential syntrophy between these microorganisms, suggesting that members of Bathyarchaeota could be important participants of geochemical cycle in paddy soils. These results shed light on the ecological lifestyle of Bathyarchaeota in paddy soils, and provide some baseline for further understanding Bathyarchaeota in arable soils. IMPORTANCE Bathyarchaeota, the dominant archaeal lineage in sedimentary environments, has been the spotlight of microbial research due to its vital role in carbon cycling. Although Bathyarchaeota has been also detected in paddy soils worldwide, its distribution in this environment has not yet been investigated. In this study, we conducted a global scale meta-analysis and found that Bathyarchaeota is also the dominant archaeal lineage in paddy soils with significant regional abundance differences. Bathy-6 is the most predominant subgroup in paddy soils, which differs from sediments. Furthermore, Bathyarchaeota are highly associated with methanogens and ammonia-oxidizing archaea, suggesting that they may be involved in the carbon and nitrogen cycle in paddy soil. These interactions provide insight into the ecological functions of Bathyarchaeota in paddy soils, which will be the foundation of future studies regarding the geochemical cycle in arable soils and global climate change.


Asunto(s)
Euryarchaeota , Suelo , Humanos , Suelo/química , Amoníaco/metabolismo , Archaea/metabolismo , Ambiente , Euryarchaeota/metabolismo , Carbono/metabolismo
9.
Front Microbiol ; 14: 1065302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992926

RESUMEN

Introduction: The microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood. Methods: Here, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified. Results: Our findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa. Conclusion: Our study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.

10.
New Phytol ; 193(3): 650-664, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22142234

RESUMEN

• Inorganic arsenic (As(i) ) in rice (Oryza sativa) grains is a possible threat to human health, with risk being strongly linked to total dietary rice consumption and consumed rice As(i) content. This study aimed to identify the range and stability of genetic variation in grain arsenic (As) in rice. • Six field trials were conducted (one each in Bangladesh and China, two in Arkansas, USA over 2 yr, and two in Texas, USA comparing flooded and nonflood treatments) on a large number of common rice cultivars (c. 300) representing genetic diversity among international rice cultivars. • Within each field there was a 3-34 fold range in grain As concentration which varied between rice subpopulations. Importantly, As(i) correlated strongly with total As among a subset of 40 cultivars harvested in Bangladesh and China. • Genetic variation at all field sites was a large determining factor for grain As concentration, indicating that cultivars low in grain As could be developed through breeding. The temperate japonicas exhibited lower grain As compared with other subpopulations. Effects for year, location and flooding management were also statistically significant, suggesting that breeding strategies must take into account environmental factors.


Asunto(s)
Arsénico/metabolismo , Variación Genética , Oryza/crecimiento & desarrollo , Oryza/genética , Semillas/genética , Semillas/metabolismo , Arkansas , Bangladesh , China , Flores/fisiología , Oryza/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA