RESUMEN
The preparation of perovskite quantum dots (PQDs) using an in situ inkjet printing method is beneficial for improving the problems of aggregation and photoluminescence (PL) quenching during long-term storage. However, the stability of PQDs prepared using this method is still not ideal, and the morphology of in situ-printed patterns needs to be optimized. To address these problems, this study introduced polymethyl methacrylate (PMMA) into the process of in situ inkjet printing of PQDs and explored the effect of PMMA on the in situ patterning effect of PQDs. The results showed that using a mixed precursor solution containing a small amount of PMMA as the printing ink can slow down the shrinkage process of ink droplets and improve the uniformity of film formation. As the printing substrate, PMMA provided a suitable high-viscosity environment for the in situ growth of PQDs. This could effectively suppress the coffee ring effect. In addition, the interaction between the C=O=C group in PMMA and metal ion Pb2+ in the CsPbBr3 precursor molecules was favourable to enhancing the density of PQDs. The prepared PMMA-coated CsPbBr3 quantum dots (QDs) pattern had high stability and could maintain at 90.08% PL intensity after 1 week of exposure to air.
Asunto(s)
Óxidos , Puntos Cuánticos , Titanio , Polimetil Metacrilato , Compuestos de Calcio , TintaRESUMEN
BACKGROUND: There has been a gradual increase in the occurrence of cardiovascular and cerebrovascular ischemic diseases, particularly as comorbidities. Yet, the mechanisms underlying these diseases remain unclear. Ferroptosis has emerged as a potential contributor to cardio-cerebral ischemic processes. Therefore, this study investigated the shared biological mechanisms between the two processes, as well as the role of ferroptosis genes in cardio-cerebral ischemic damage, by constructing co-expression modules for myocardial ischemia (MI) and ischemic stroke (IS) and a network of protein-protein interactions, mRNA-miRNA, mRNA-transcription factors (TFs), mRNA-RNA-binding proteins (RBPs), and mRNA-drug interactions. RESULTS: The study identified seven key genes, specifically ACSL1, TLR4, ADIPOR1, G0S2, PDK4, HP, PTGS2, and subjected them to functional enrichment analysis during ischemia. The predicted miRNAs were found to interact with 35 hub genes, and interactions were observed between 11 hub genes and 30 TF transcription factors. Additionally, 10 RBPs corresponding to 16 hub genes and 163 molecular compounds corresponding to 30 hub genes were identified. This study also clarified the levels of immune infiltration between MI and IS and different subtypes. Finally, we identified four hub genes, including TLR4, by using a diagnostic model constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis; ADIPOR1, G0S2, and HP were shown to have diagnostic value for the co-pathogenesis of MI and cerebral ischemia by both validation test data and RT-qPCR assay. CONCLUSIONS: To the best our knowledge, this study is the first to utilize multiple algorithms to comprehensively analyze the biological processes of MI and IS from various perspectives. The four hub genes, TLR4, ADIPOR1, G0S2, and HP, have proven valuable in offering insights for the investigation of shared injury pathways in cardio-cerebral injuries. Therefore, these genes may serve as diagnostic markers for cardio-cerebral ischemic diseases.
Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Isquemia Miocárdica , Humanos , Ferroptosis/genética , Receptor Toll-Like 4/genética , Isquemia , ARN Mensajero/genética , Factores de TranscripciónRESUMEN
BACKGROUND: There is a mutual hemodynamic and pathophysiological basis between the heart and brain. Glutamate (GLU) signaling plays an important role in the process of myocardial ischemia (MI) and ischemic stroke (IS). To further explore the common protective mechanism after cardiac and cerebral ischemic injuries, the relationship between GLU receptor-related genes and MI and IS were analyzed. RESULTS: A total of 25 crosstalk genes were identified, which were mainly enriched in the Toll-like receptor signaling pathway, Th17 cell differentiation, and other signaling pathways. Protein-protein interaction analysis suggested that the top six genes with the most interactions with shared genes were IL6, TLR4, IL1B, SRC, TLR2, and CCL2. Immune infiltration analysis suggested that immune cells such as myeloid-derived suppressor cells and monocytes were highly expressed in the MI and IS data. Memory B cells and Th17 cells were expressed at low levels in the MI and IS data; molecular interaction network construction suggested that genes such as JUN, FOS, and PPARA were shared genes and transcription factors; FCGR2A was a shared gene of MI and IS as well as an immune gene. Least absolute shrinkage and selection operator logistic regression analysis identified nine hub genes: IL1B, FOS, JUN, FCGR2A, IL6, AKT1, DRD4, GLUD2, and SRC. Receiver operating characteristic analysis revealed that the area under the curve of these hub genes was > 65% in MI and IS for all seven genes except IL6 and DRD4. Furthermore, clinical blood samples and cellular models showed that the expression of relevant hub genes was consistent with the bioinformatics analysis. CONCLUSIONS: In this study, we found that the GLU receptor-related genes IL1B, FOS, JUN, FCGR2A, and SRC were expressed in MI and IS with the same trend, which can be used to predict the occurrence of cardiac and cerebral ischemic diseases and provide reliable biomarkers to further explore the co-protective mechanism after cardiac and cerebral ischemic injury.
Asunto(s)
Isquemia Encefálica , Isquemia Miocárdica , Humanos , Interleucina-6 , Miocardio , Isquemia Miocárdica/genética , Biología Computacional , Isquemia Encefálica/genéticaRESUMEN
BACKGROUND: Meat fraud and adulteration incidents occur frequently in almost all regions of the globe, especially with the increase in the world's population. To ensure the authenticity of meat products, we developed a 10-plex xMAP assay to simultaneously detect ten animal materials: bovine, caprine, poultry, swine, donkey, deer, horse, dog, fox and mink. RESULTS: This method was investigated by analyzing DNA extracts from raw muscle, muscle mixtures, meat products and animal feeds. Our results indicated that the species of interest can be identified, differentiated and detected down to 1 g kg-1 in binary mixtures or 0.01-0.001 ng of genomic DNA from specific species. Testing of 125 commercial samples showed a 97.4% coincidence rate with the method used in routine testing in our lab. CONCLUSION: These results indicated that the method established in this study could detect ten animal materials simultaneously within 3 h, which provides a new, useful tool for animal ingredient analysis in meat products and animal feeds. © 2019 Society of Chemical Industry.
Asunto(s)
ADN Mitocondrial/genética , Contaminación de Alimentos/análisis , Productos de la Carne/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Alimentación Animal/análisis , Animales , Bovinos , Ciervos , Perros , Zorros , Cabras , Caballos , Visón , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Aves de Corral , PorcinosRESUMEN
The identification of animal species in feed and feedstuffs is important for detecting contamination and fraudulent replacement of animal components that might cause health and economic problems. A novel multiplex assay, based on xMAP technology and the generic detection of closely related species, was developed for the simultaneous differential detection of avian, fish, and ruminant DNA in products. Universal primers and probes specific to avian, fish, or ruminant species were designed to target a conserved mitochondrial DNA sequence in the 12S ribosomal RNA gene (rRNA). The assay specificity was validated using samples of 27 target and 10 nontarget animal species. The limits of detection of the purified DNA were determined to be 0.2 pg/µL-0.1 ng/µL by testing the meat samples of six species and four feedstuffs. The detection sensitivity of the experimental mixtures was demonstrated to be 0.01% (weight percentage). The assay's suitability for practical application was evaluated by testing feed samples; unlabeled animal ingredients were detected in 32% of the 56 samples. The assay differentially detected the three targeted categories of animal species in less than 2 h, reflecting improvements in speed and efficiency. Based on these results, this novel multiplex xMAP assay provides a reliable and highly efficient technology for the routine detection of animal species in feed and other products for which this information is needed.
Asunto(s)
Alimentación Animal/análisis , ADN/aislamiento & purificación , Contaminación de Alimentos , Hibridación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , Aves , ADN/genética , Cartilla de ADN/genética , Peces , Sondas de Oligonucleótidos/genética , ARN Ribosómico/genética , Rumiantes , Sensibilidad y EspecificidadRESUMEN
Blood cell counts are important clinical indicators for health status. The liver plays a crucial role in food digestion and metabolism and is also a blood-forming organ. Here, we conducted a whole-genome quantitative trait transcript (QTT) analysis on 497 liver samples for 16 hematological traits in a White Duroc × Erhualian F2 pig resource population. A total of 20,108 transcripts were explored to detect their association with hematological traits. By using Spearman correlation coefficients, we identified 1,267 QTTs for these 16 hematological traits at the significance threshold of P < 0.001. We found 31 candidate genes for erythrocyte and leukocyte-related traits by a look-up of human and pig genome-wide association study results. Furthermore, we constructed coexpression networks for leukocyte-related QTTs using weighted gene coexpression analysis. These QTTs were clustered into two to eight modules. The highest connection strength in intramodules was identified in a module for white blood cell count. In the module, USP18, RSAD2, and OAS1 appeared to be important genes involved in interferon-stimulated innate immune system. The findings improve our understanding of intrinsic relationships between the liver and blood cells and provide novel insights into the potential therapeutic targets of hematologic diseases.
Asunto(s)
Células Sanguíneas/metabolismo , Hígado/metabolismo , Sitios de Carácter Cuantitativo/genética , Porcinos/genética , Animales , Cruzamientos Genéticos , Eritrocitos/metabolismo , Femenino , Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedades Hematológicas/genética , Leucocitos/metabolismo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Chinese Erhualian is the most prolific pig breed in the world. The breed exhibits exceptionally large and floppy ears. To identify genes underlying this typical feature, we previously performed a genome scan in a large scale White Duroc × Erhualian cross and mapped a major QTL for ear size to a 2-cM region on chromosome 7. We herein performed an identical-by-descent analysis that defined the QTL within a 750-kb region. Historically, the large-ear feature has been selected for the ancient sacrificial culture in Erhualian pigs. By using a selective sweep analysis, we then refined the critical region to a 630-kb interval containing 9 annotated genes. Four of the 9 genes are expressed in ear tissues of piglets. Of the 4 genes, PPARD stood out as the strongest candidate gene for its established role in skin homeostasis, cartilage development, and fat metabolism. No differential expression of PPARD was found in ear tissues at different growth stages between large-eared Erhualian and small-eared Duroc pigs. We further screened coding sequence variants in the PPARD gene and identified only one missense mutation (G32E) in a conserved functionally important domain. The protein-altering mutation showed perfect concordance (100%) with the QTL genotypes of all 19 founder animals segregating in the White Duroc × Erhualian cross and occurred at high frequencies exclusively in Chinese large-eared breeds. Moreover, the mutation is of functional significance; it mediates down-regulation of ß-catenin and its target gene expression that is crucial for fat deposition in skin. Furthermore, the mutation was significantly associated with ear size across the experimental cross and diverse outbred populations. A worldwide survey of haplotype diversity revealed that the mutation event is of Chinese origin, likely after domestication. Taken together, we provide evidence that PPARD G32E is the variation underlying this major QTL.
Asunto(s)
Oído Externo/anatomía & histología , Mutación Missense/genética , PPAR delta/genética , Sitios de Carácter Cuantitativo/genética , Porcinos/anatomía & histología , Porcinos/genética , Alelos , Secuencia de Aminoácidos , Animales , Cruzamiento , China , Mapeo Cromosómico , Regulación hacia Abajo/genética , Femenino , Regulación de la Expresión Génica/genética , Frecuencia de los Genes , Estudios de Asociación Genética , Variación Genética/genética , Haplotipos , Masculino , Datos de Secuencia Molecular , PPAR delta/química , Alineación de Secuencia , Transducción de Señal/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
BACKGROUND: Surgery is the preferred treatment for acute Stanford type A aortic dissection (STAAD); however, due to the complexity of the procedure, cardiac ischaemia and cardiopulmonary bypass (CPB) time are longer than general heart surgery, leading to complications. In this present study, we used an integrated tetra-furcate graft for both modified aortic root and distal arch anastomoses (frozen elephant trunk technique, [FET]), and investigated postoperative outcomes associated with this technique in patients with STAAD. METHODS: We included a total of 140 patients who underwent total arch replacement and FET between January 2019 and June 2022 in the present study, 41 patients who underwent the modified technique, and 99 who underwent the graft eversion technique. We subsequently analyzed the perioperative outcomes to compare the differences between the two techniques. RESULTS: There were no statistically significant differences between the two groups in regards to the preoperative characteristics; however, the intraoperative CPB, cardiac ischaemia, and operation times of the modified technique group were significantly shorter than those of the eversion technique group (P = 0.02, P = 0.01, and P = 0.04, respectively), as were postoperative hypoxaemia, intensive care unit (ICU) stay, and ventilation times (P = 0.04, P = 0.03, and P = 0.04, respectively). Additionally, the degree of postoperative bilirubin elevation was milder in the modified technique group (P = 0.002 for direct bilirubin and P = 0.01 for indirect bilirubin). CONCLUSIONS: The modified anastomosis technique can significantly shorten CPB, cardiac ischemia, and operation times, and reduce the intraoperative FFP transfusion and postoperative hypoxemia times. This modified technique, therefore, is worth utilizing for patients with STAAD.
Asunto(s)
Disección Aórtica , Implantación de Prótesis Vascular , Humanos , Aorta Torácica/cirugía , Implantación de Prótesis Vascular/métodos , Anastomosis Quirúrgica , Bilirrubina , Isquemia/cirugía , Estudios Retrospectivos , Stents , Resultado del TratamientoRESUMEN
Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.
Asunto(s)
Disección Aórtica , Modelos Animales de Enfermedad , Janus Quinasa 2 , Piroptosis , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Disección Aórtica/metabolismo , Disección Aórtica/patología , Disección Aórtica/genética , Técnicas de Silenciamiento del Gen , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Ratones Endogámicos C57BL , Piroptosis/genética , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacologíaRESUMEN
BACKGROUND: Porcine chromosome X harbors four QTL strongly affecting backfat thickness (BFT), ham weight (HW), intramuscular fat content (IMF) and loin eye area (LEA). The confidence intervals (CI) of these QTL overlap and span more than 30 cM, or approximately 80 Mb. This study therefore attempts to fine map these QTL by joint analysis of two large-scale F2 populations (Large White × Meishan and White Duroc × Erhualian constructed by INRA and JXAU respectively) and furthermore, to determine whether these QTL are caused by mutations in three positional candidate genes (ACSL4, SERPINA7 and IRS4) involved in lipid biosynthesis. RESULTS: A female-specific linkage map with an average distance of 2 cM between markers in the initial QTL interval (SW2456-SW1943) was created and used here. The CI of QTL for BFT, HW and LEA were narrowed down to 6-7 cM, resulting from the joint analysis. For IMF, two linked QTL were revealed in the INRA population but not in the JXAU population, causing a wider CI (13 cM) for IMF QTL. Linkage analyses using two subsets of INRA F1 dam families demonstrate that the BFT and HW QTL were segregating in the Meishan pigs. Moreover, haplotype comparisons between these dams suggest that within the refined QTL region, the recombination coldspot (~34 Mb) flanked by markers MCSE3F14 and UMNP1218 is unlikely to contain QTL genes. Two SNPs in the ACSL4 gene were identified and showed significant association with BFT and HW, but they and the known polymorphisms in the other two genes are unlikely to be causal mutations. CONCLUSION: The candidate QTL regions have been greatly reduced and the QTL are most likely located downstream of the recombination coldspot. The segregation of SSCX QTL for BFT and HW within Meishan breed provides an opportunity for us to make effective use of Meishan chromosome X in crossbreeding. Further studies should attempt to identify the impact of additional DNA sequence (e.g. CNV) and expression variation in the three genes or their surrounding genes on these traits.
Asunto(s)
Tejido Adiposo , Sitios de Carácter Cuantitativo , Porcinos/genética , Cromosoma X , Animales , Secuencia de Bases , Cartilla de ADN , Haplotipos , Reacción en Cadena de la PolimerasaRESUMEN
BACKGROUND: Purchasing pork that is boned within 1 h postmortem and not aged is customary in China, and final pork color would not be fully realized. The relationship between early postmortem, pre-rigor meat color and 24 h postmortem, post-rigor pork color was investigated and related to the rate of pH and temperature decline within the longissimus dorsi (LD) and the semimembranosus (SM) muscles of pork carcasses. Muscle color, pH and temperature were measured at 45 min and at 3, 9, 15 and 24 h postmortem in carcasses of F2 White Duroc and Chinese Erhualian pigs. RESULTS: Pork color at 45 min postmortem was not indicative of that at 24 h postmortem in LD and SM, although muscle pH values and temperature at 45 min postmortem were significantly correlated with the LD and SM ultimate color. High muscle pH was associated with decreased L*, whereas high muscle temperature increased L*. Muscle pH and temperature had little effect on a* and b* in LD and color evolution in SM. CONCLUSIONS: Results indicated that meat color inspected shortly after slaughter does not reflect post-rigor meat quality.
Asunto(s)
Dieta/etnología , Calidad de los Alimentos , Almacenamiento de Alimentos , Carne/análisis , Modelos Químicos , Músculo Esquelético/química , Animales , Castración , China , Cruzamientos Genéticos , Femenino , Concentración de Iones de Hidrógeno , Masculino , Pigmentación , Análisis de Regresión , Sus scrofa , Temperatura , Factores de TiempoRESUMEN
There is an urgent need to find common targets for precision therapy, as there are no effective preventive therapeutic measures for combined clinical heart-brain organ protection and common pathways associated with glutamate receptors are involved in heart-brain injury, but current glutamate receptor-related clinical trials have failed. Ischemia-reperfusion injury (IRI) is a common pathological condition that occurs in multiple organs, including the heart and brain, and can lead to severe morbidity and mortality. N-methyl-D-aspartate receptor (NMDAR), a type of ionotropic glutamate receptor, plays a crucial role in the pathogenesis of IRI. NMDAR activity is mainly regulated by endogenous activators, agonists, antagonists, and voltage-gated channels, and activation leads to excessive calcium influx, oxidative stress, mitochondrial dysfunction, inflammation, apoptosis, and necrosis in ischemic cells. In this review, we summarize current research advances regarding the role of NMDAR in myocardial and cerebral IRI and discuss potential therapeutic strategies to modulate NMDAR signaling to prevent and treat IRI.
Asunto(s)
Receptores de N-Metil-D-Aspartato , Daño por Reperfusión , Humanos , Isquemia , Transducción de Señal , Miocardio/metabolismoRESUMEN
Background: Acute Stanford type A aortic dissection (STAAD) is a fatal condition requiring urgent surgical intervention. Owing to the complexity of the surgical process, various complications, such as neurological disorders, are common. In this study, we prioritized the reconstruction of aortic arch branches during surgery and investigated the association between prioritizing the branches and the postoperative outcomes of patients with STAAD. Methods: Ninety-seven patients were included in the observational study and underwent total arch replacement and frozen elephant trunk technique between January 2018 and June 2021. Of these, 35 patients underwent the branch-priority technique, and 62 patients underwent the classic technique. By analyzing the perioperative outcomes, we compared the differences between the two techniques. Results: The branch priority group had significantly shorter cardiopulmonary bypass and ventilator times and earlier postoperative wake-up times than the classic group. Additionally, the ICU stay time was shorter, with a significant decrease in neurological complications and 24â h drainage in the branch priority group compared to the classic group. Conclusion: The branch priority technique can effectively provide better brain protection, resulting in earlier awakening of patients after surgery, reduced neurological complications, shorter ventilation time and decreased ICU hospitalization time. Therefore, it is recommended for use in aortic dissection surgeries.
RESUMEN
BACKGROUND: Thoracic aortic aneurysm or dissections (TAADs) represent a group of life-threatening diseases. Genetic aetiology can affect the age of onset, clinical phenotype, and timing of intervention. We conducted a prospective trial to determine the prevalence of pathogenic variants in TAAD patients and to elucidate the traits related to harbouring the pathogenic variants. One hundred and one unrelated TAAD patients underwent genetic sequencing and analysis for 23 TAAD-associated genes using a targeted PCR and next-generation sequencing-based panel. RESULTS: A total of 47 variants were identified in 52 TAAD patients (51.5%), including 5 pathogenic, 1 likely pathogenic and 41 variants of uncertain significance. The pathogenic or likely pathogenic (P/LP) variants in 4 disease-causing genes were carried by 1 patient with familial and 5 patients with sporadic TAAD (5.9%). In addition to harbouring one variant causing familial TAAD, the FBN1 gene harboured half of the P/LP variants causing sporadic TAAD. Individuals with an age of onset less than 50 years or normotension had a significantly increased genetic risk. CONCLUSIONS: TAAD patients with a younger age at diagnosis or normotension were more likely to carry a P/LP variant; thus, routine genetic testing will be beneficial to a better prognosis through genetically personalized care prior to acute rupture or dissection.
Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Humanos , Estudios Prospectivos , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , ChinaRESUMEN
Skeletal muscle fiber characteristics (MFCs) have been extensively studied due to their importance to human health and athletic ability, as well as to the quantity and quality of livestock meat production. Hence, we performed a genome-wide association study (GWAS) on nine muscle fiber traits by using whole genome sequence data in an eight-breed crossed heterogeneous stock pig population. This GWAS revealed 67 quantitative trait loci (QTLs) for these traits. The most significant GWAS signal was detected in the region of Sus scrofa chromosome 12 (SSC12) containing the MYH gene family. Notably, we identified a significant SNP rs322008693 (P = 7.52E-09) as the most likely causal mutation for the total number of muscle fibers (TNMF) QTL on SSC1. The results of EMSA and luciferase assays indicated that the rs322008693 SNP resided in a functional element. These findings provide valuable molecular markers for pig meat production selection as well as for deciphering the genetic mechanisms of the muscle fiber physiology.
Asunto(s)
Estudio de Asociación del Genoma Completo , Fibras Musculares Esqueléticas , Humanos , Animales , Porcinos/genética , Sitios de Carácter Cuantitativo , Carne/análisis , Fenotipo , Polimorfismo de Nucleótido Simple , Sus scrofa/genéticaRESUMEN
BACKGROUND: Marfan syndrome (MFS) is an inherited connective tissue disorder that affects the skeletal, ocular, and cardiovascular system. The disease's severity and clinical manifestations vary greatly due to pathogenic variants which, combined with a lack of research on the correlation between MFS's genotype and phenotype, make MFS a challenging disease to diagnose. This study aims to further the understanding of MFS by shedding light on the clinical manifestation of a novel variant in fibrillin-1 (FBN1)-the protein responsible for the genetic defects that lead to MFS. METHODS: A patient was diagnosed with MFS by combining a clinical examination (based on the 2010 revision to Ghent nosology criteria) with a targeted next-generation sequence analysis. The functional analysis of the causal mutation and the clinical details of the affected patient were then analyzed. RESULTS: The FBN1 heterozygous variant c.5081_5082insT, which is known to delete large fragments from amino acids 1702 to 2871, was found in the proband patient and her son. The two also displayed the skeletal and cardiovascular manifestations of MFS. In addition, the 14-year-old son was identified as having a dilated aortic bulb at the same rupture site of the proband's dissection, and the proband's mother also died at age 32 due to aortic dissection. CONCLUSIONS: The FBN1 variant c.5081_5082insT (p.Leu1694fs*9) is a pathogenic mutation that can cause MFS patients to experience early-onset familial thoracic aortic aneurysms (TAA). We hope that this discovery can provide further insight into the treatment of MFS patients with truncating variants in exons 42-65.
RESUMEN
Understanding the genetic factors behind meat quality traits is of great significance to animal breeding and production. We previously conducted a genome-wide association study (GWAS) for meat quality traits in a White Duroc × Erhualian F2 pig population using Illumina porcine 60K SNP data. Here, we further investigate the functional candidate genes and their network modules associated with meat quality traits by integrating transcriptomics and GWAS information. Quantitative trait transcript (QTT) analysis, gene expression QTL (eQTL) mapping, and weighted gene co-expression network analysis (WGCNA) were performed using the digital gene expression (DGE) data from 493 F2 pig's muscle and liver samples. Among the quantified 20,108 liver and 23,728 muscle transcripts, 535 liver and 1,014 muscle QTTs corresponding to 416 and 721 genes, respectively, were found to be significantly (p < 5 × 10-4) correlated with 22 meat quality traits measured on longissiums dorsi muscle (LM) or semimembranosus muscle (SM). Transcripts associated with muscle glycolytic potential (GP) and pH values were enriched for genes involved in metabolic process. There were 42 QTTs (for 32 genes) shared by liver and muscle tissues, of which 10 QTTs represent GP- and/or pH-related genes, such as JUNB, ATF3, and PPP1R3B. Furthermore, a genome-wide eQTL mapping revealed a total of 3,054 eQTLs for all annotated transcripts in muscle (p < 2.08 × 10-5), including 1,283 cis-eQTLs and 1771 trans-eQTLs. In addition, WGCNA identified five modules relevant to glycogen metabolism pathway and highlighted the connections between variations in meat quality traits and genes involved in energy process. Integrative analysis of GWAS loci, eQTL, and QTT demonstrated GALNT15/GALNTL2 and HTATIP2 as strong candidate genes for drip loss and pH drop from postmortem 45 min to 24 h, respectively. Our findings provide valuable insights into the genetic basis of meat quality traits and greatly expand the number of candidate genes that may be valuable for future functional analysis and genetic improvement of meat quality.
RESUMEN
BACKGROUND: Marfan syndrome (MFS) is a rare autosomal dominant connective tissue disorder. Diagnosing MFS can be challenging as the disease's severity and clinical manifestations differ between pathogenic variants, and because a lack of published information currently exists on phenotype-genotype correlations. This report aims to underline the clinical manifestations associated with fibrillin-1 (FBN1) gene mutations by assessing MFS in 6 families from China. METHODS: We diagnosed 6 patients and their relatives with MFS by combining a clinical examination (based on the 2010 revised Ghent nosology criteria) with a targeted next-generation sequencing analysis. The functional analysis of the causal mutations and clinical details of the affected patients were then assessed. RESULTS: We identified 6 pathogenic mutations in FBN1, including 1 novel frameshift, 1 nonsense, and 4 missense mutations. Most uniquely, mitral valve prolapses (MVP) and ectopia lentis (EL) were found in the cysteine-related mutations. Typically, facial symptoms of MFS are observed in frameshift or nonsense mutants, not in cysteine-related ones. Furthermore, the patients with premature terminal codons had a more serious skin condition than patients with missense mutations, partly indicating the important effect FBN1 has on skin. CONCLUSIONS: This study expands the mutation spectrum of MFS and highlights possible genotype-phenotype correlations, thereby improving the early diagnosis and symptomatic treatment of the disease.
Asunto(s)
Síndrome de Marfan , Análisis Mutacional de ADN , Exoma , Fibrilinas , Genotipo , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/terapia , Proteínas de Microfilamentos/genéticaRESUMEN
BACKGROUND: Variations in recombination fraction (theta) among chromosomal regions, individuals and families have been observed and have an important impact on quantitative trait loci (QTL) mapping studies. Such variations on porcine chromosome X (SSC-X) and on other mammalian chromosome X are rarely explored. The emerging assembly of pig sequence provides exact physical location of many markers, facilitating the study of a fine-scale recombination landscape of the pig genome by comparing a clone-based physical map to a genetic map. Using large offspring of F1 females from two large-scale resource populations (Large White male symbol x Chinese Meishan female symbol, and White Duroc male symbol x Chinese Erhualian female symbol), we were able to evaluate the heterogeneity in theta for a specific interval among individual F1 females. RESULTS: Alignments between the cytogenetic map, radiation hybrid (RH) map, genetic maps and clone map of SSC-X with the physical map of human chromosome X (HSA-X) are presented. The most likely order of 60 markers on SSC-X is inferred. The average recombination rate across SSC-X is of approximately 1.27 cM/Mb. However, almost no recombination occurred in a large region of approximately 31 Mb extending from the centromere to Xq21, whereas in the surrounding regions and in the Xq telomeric region a recombination rate of 2.8-3.3 cM/Mb was observed, more than twice the chromosome-wide average rate. Significant differences in theta among F1 females within each population were observed for several chromosomal intervals. The largest variation was observed in both populations in the interval UMNP71-SW1943, or more precisely in the subinterval UMNP891-UMNP93. The individual variation in theta over this subinterval was found associated with F1 females' maternal haplotypes (Chinese pig haplotypes) and independent of paternal haplotype (European pig haplotypes). The theta between UMNP891 and UMNP93 for haplotype 1122 and 4311 differed by more than fourteen-fold (10.3% vs. 0.7%). CONCLUSIONS: This study reveals marked regional, individual and haplotype-specific differences in recombination rate on SSC-X. Lack of recombination in such a large region makes it impossible to narrow QTL interval using traditional fine-mapping approaches. The relationship between recombination variation and haplotype polymorphism is shown for the first time in pigs.
Asunto(s)
Recombinación Genética , Sus scrofa/genética , Cromosoma X/genética , Animales , Femenino , Ligamiento Genético , Variación Genética , Genética de Población , Haplotipos , Humanos , Meiosis , Repeticiones de Microsatélite , Mapeo de Híbrido por Radiación , Alineación de SecuenciaRESUMEN
Maternal behavior around parturition is important to piglet survival. An extreme form of failure of maternal behavior, also called maternal infanticide, often occurs in some sows. This is defined as an active attack to piglets using the jaws, resulting in serious or fatal bite wounds within 24 h of birth. It leads to considerable economic losses to the pig industry and severe problems in pig welfare. In this study, maternal behaviors from 5 h before to 24 h after parturition were recorded in detail on 288 White Duroc x Erhualian intercross F(2) sows over their three continuous farrowings. In the F(2) population 12.8% gilts showed maternal infanticide in their first litter, while the incidences of maternal infanticide at their second and third farrowing reduced to 7.5% and 4.5%, respectively. All F(2) sows were genotyped for 194 microsatellite markers spanning the whole pig genome. A whole genome linkage analysis was performed using the non-parametric linkage test by SimWalk2 software. The results identified that seven chromosome regions on SSC2, SSC6, SSC14, SSC15 and SSCX were significantly linked with maternal infanticide (P < 0.05). The quantitative trait loci (QTL) on SSC2 and SSCX achieved P < 0.01 significance level. The most promising QTLs, however, were detected on X chromosome where three peaks of negative logarithm of P-value located at marker SW980, SW2456 and SW1608. QTLs on SSC2 and SSCX from this experiment were consistent with published results from the Western commercial lines.