Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38725241

RESUMEN

BACKGROUND AND AIM: In this study, a deep learning algorithm was used to predict the survival rate of colon cancer (CC) patients, and compared its performance with traditional Cox regression. METHODS: In this population-based cohort study, we used the characteristics of patients diagnosed with CC between 2010 and 2015 from the Surveillance, Epidemiology and End Results (SEER) database. The population was randomized into a training set (n = 10 596, 70%) and a test set (n = 4536, 30%). Brier scores, area under the (AUC) receiver operating characteristic curve and calibration curves were used to compare the performance of the three most popular deep learning models, namely, artificial neural networks (ANN), deep neural networks (DNN), and long-short term memory (LSTM) neural networks with Cox proportional hazard (CPH) model. RESULTS: In the independent test set, the Brier values of ANN, DNN, LSTM and CPH were 0.155, 0.149, 0.148, and 0.170, respectively. The AUC values were 0.906 (95% confidence interval [CI] 0.897-0.916), 0.908 (95% CI 0.899-0.918), 0.910 (95% CI 0.901-0.919), and 0.793 (95% CI 0.769-0.816), respectively. Deep learning showed superior promising results than CPH in predicting CC specific survival. CONCLUSIONS: Deep learning showed potential advantages over traditional CPH models in terms of prognostic assessment and treatment recommendations. LSTM exhibited optimal predictive accuracy and has the ability to provide reliable information on individual survival and treatment recommendations for CC patients.

2.
Ann Hematol ; 102(10): 2651-2658, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37481473

RESUMEN

BACKGROUND: The relationship between anemia and depression remains controversial. OBJECTIVE: To explore the association between anemia/hemoglobin and depression. METHODS: The data for our cross-sectional study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Weighted multivariate logistic regression was performed to examine the association between anemia/hemoglobin and depression. Inverse variance weighted (IVW), weighted-median, and MR-Egger were used in MR analyses to assess the causal relationship between anemia/hemoglobin and depression. Heterogeneity and directional pleiotropy were assessed using the Cochrane Q test and Egger-intercept test, respectively. Sensitivity analysis was conducted by the leave-one-out approach. All analyses were carried out using IBM SPSS 24.0 and R version 4.2.2. RESULTS: A total of 29,391 NHANES participants were included in this study. After adjusting for all covariates, the association between anemia/hemoglobin and depression was not significant (P < 0.05). IVW estimates revealed that broad anemia had no significant effect on the risk of depression (OR = 1.00, 95% CI = 0.99-1.01, P = 0.432). Findings of weighted median and MR-Egger were consistent with those from IVW (weighted median: OR = 1.00, 95% CI = 0.99-1.02; P = 0.547; MR-Egger: OR = 1.01, 95% CI = 0.98-1.03, P = 0.605). The results of three MR Analyses methods also showed no causal association between hemoglobin and depression. CONCLUSIONS: Our findings do not support a causal association between anemia and depression. The association between hemoglobin concentration and depression was not statistically significant either.


Asunto(s)
Anemia , Análisis de la Aleatorización Mendeliana , Humanos , Encuestas Nutricionales , Estudios Transversales , Anemia/epidemiología , Nonoxinol
3.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063353

RESUMEN

The application of plant proteins in food systems is largely hindered by their poor foaming or emulsifying properties and low digestibility compared with animal proteins, especially due to the aggregate state with tightly folded structure, slowly adsorbing at the interfaces, generating films with lower mechanical properties, and exposing less cutting sites. Physical fields and pH shifting have certain synergistic effects to efficiently tune the structure and redesign the interfacial layer of plant proteins, further enhancing their foaming or emulsifying properties. The improvement mechanisms mainly include: i) Aggregated plant proteins are depolymerized to form small protein particles and flexible structure is more easily exposed by combination treatment; ii) Particles with appropriate surface properties are quickly adsorbed to the interfacial layer, and then unfolded and rearranged to generate a tightly packed stiff interfacial layer to enhance bubble and emulsion stability; and iii) The unfolding and rearrangement of protein structure at the interface may result in the exposure of more cutting sites of digestive enzymes. This review summarizes the latest research progress on the structural changes, interfacial behaviors, and digestion properties of plant proteins under combined treatment, and elucidates the future development of these modification technologies for plant proteins in the food industry.

4.
BMC Psychiatry ; 23(1): 620, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612646

RESUMEN

BACKGROUND: Depression is a common mental health problem among veterans, with high mortality. Despite the numerous conducted investigations, the prediction and identification of risk factors for depression are still severely limited. This study used a deep learning algorithm to identify depression in veterans and its factors associated with clinical manifestations. METHODS: Our data originated from the National Health and Nutrition Examination Survey (2005-2018). A dataset of 2,546 veterans was identified using deep learning and five traditional machine learning algorithms with 10-fold cross-validation. Model performance was assessed by examining the area under the subject operating characteristic curve (AUC), accuracy, recall, specificity, precision, and F1 score. RESULTS: Deep learning had the highest AUC (0.891, 95%CI 0.869-0.914) and specificity (0.906) in identifying depression in veterans. Further study on depression among veterans of different ages showed that the AUC values for deep learning were 0.929 (95%CI 0.904-0.955) in the middle-aged group and 0.924(95%CI 0.900-0.948) in the older age group. In addition to general health conditions, sleep difficulties, memory impairment, work incapacity, income, BMI, and chronic diseases, factors such as vitamins E and C, and palmitic acid were also identified as important influencing factors. CONCLUSIONS: Compared with traditional machine learning methods, deep learning algorithms achieved optimal performance, making it conducive for identifying depression and its risk factors among veterans.


Asunto(s)
Aprendizaje Profundo , Veteranos , Persona de Mediana Edad , Humanos , Anciano , Depresión/diagnóstico , Encuestas Nutricionales , Algoritmos
5.
Neoplasma ; 70(1): 145-157, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916930

RESUMEN

Growing evidence has indicated that circular RNAs (circRNAs) play crucial roles in the tumorigenesis and progression of diverse malignancies. However, the majority of circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined and the exact functions and underlying mechanisms of circRNAs in ESCC still need further exploration. In this study, we identified a novel onco-circRNA hsa_circ_0002938, derived from the exons of cysteine-rich transmembrane BMP regulator 1 (CRIM1) pre-mRNA, referred to as circCRIM1. We found that the expression of circCRIM1 was higher in ESCC tissues, compared to para-carcinoma tissues. Increased expression of circCRIM1 was positively correlated with clinical parameters of ESCC patients including tumor-node-metastasis (TNM) stage, tumor invasion range, and lymph node metastasis. Functionally, the results from the experiments in vitro showed that the knockdown of circCRIM1 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in ESCC cells. By conducting bioinformatics algorithms analyses and microRNA (miRNA) rescue experiments, we found that circCRIM1 could act as a competing endogenous RNA (ceRNA) to sponge miR-342-3p in ESCC cells, and thereby upregulated the expression of transcription factor 12 (TCF12), a key regulator promoting the EMT process. Taken together, circCRIM1 facilitates the progression of ESCC by sponging miR-342-3p to regulate TCF12 and promote EMT, and the circCRIM1/miR-342-3p/TCF12 axis may be regarded as a potential predictive biomarker and therapeutic target for treating ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
6.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168931

RESUMEN

Intestinal microbiota is symbiotically associated with host health, learning about the characteristics of microbiota and the factors that modulate it could assist in developing strategies to promote human health and prevent diseases. Polysaccharides from Lycium barbarum (LBPs) are found beneficial for enhancing the activity of gut microbiota, as a potential prebiotic, which not only participates in improving body immunity, obesity, hyperlipidemia and systemic inflammation induced by oxidative stress, but also plays a magnificent role in regulating intestinal microenvironment and improving host health and target intestinal effects via its biological activities, as well as gut microbiota and metabolites. To highlight the internal relationship between intestinal microbiota and LBPs, this review focuses on the latest advances in LBPs on the intestinal microbiota, metabolites, immune regulation, intestinal barrier protection, microbiota-gut-brain axis and host health. Moreover, the preparation, structure, bioactivity and modification of LBPs were also discussed. This review may offer new perspective on LBPs improving health of gut and host via intestinal microbiota, and provide useful guidelines for the application of LBPs in the food industry.

7.
J Dairy Sci ; 105(10): 7972-7985, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36028349

RESUMEN

Milk protein concentrate was hydrolyzed using one-step enzymatic hydrolysis. Both the peptide profiles and antioxidant activities of the resulting extensive hydrolysates of milk protein concentrate (EMPH) were analyzed using a peptidomics approach based on liquid chromatography-tandem mass spectrometry. The results demonstrated that the degrees of hydrolysis of the 4 EMPH by Alcalase-Protamex, Alcalase-Protease A 2SD, Alcalase-Flavorzyme, and Alcalase-ProteAXH were 12.02%, 16.85%, 15.87%, and 15.77%, respectively. Using size exclusion chromatography, 99.85% of the peptides in the Alcalase-Protease A 2SD hydrolysate were shown to have a molecular weight of <3 kDa. A total of 33 common peptides were identified in the EMPH by liquid chromatography-tandem mass spectrometry, 16 of which were identified as bioactive peptides using bioinformatics. The peptide profiles and the coverage of master proteins of the 4 EMPH were different. The EMPH also exhibited strong free radical scavenging capacity, as indicated by the results of the 1,1-diphenyl-2-picrylhydrazyl radical, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), hydroxyl radical, and reducing power assays. The results of this study provided useful information on the peptide profiles and antioxidant activity of EMPH.


Asunto(s)
Antioxidantes , Hidrolisados de Proteína , Animales , Antioxidantes/metabolismo , Endopeptidasas , Hidrólisis , Radical Hidroxilo , Proteínas de la Leche/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Hidrolisados de Proteína/química , Subtilisinas , Ácidos Sulfónicos
8.
Mol Cancer ; 20(1): 162, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893064

RESUMEN

BACKGROUND: Cis-diamminedichloro-platinum (CDDP)-based chemotherapy regimens are the most predominant treatment strategies for patients with esophageal squamous cell carcinoma (ESCC). Dysregulated long non-coding RNAs (lncRNAs) contribute to CDDP resistance, which results in treatment failure in ESCC patients. However, the majority of lncRNAs involved in CDDP resistance in ESCC remain to be elucidated. METHODS: The public Gene Expression Omnibus (GEO) dataset GSE45670 was analysed to reveal potential lncRNAs involved in CDDP resistance of ESCC. Candidate upregulated lncRNAs were detected in ESCC specimens by qRT-PCR to identify crucial lncRNAs. Non-coding RNA activated by DNA damage (NORAD) was selected for further study. Kaplan-Meier analysis and a COX proportional regression model were performed to analyse the potential of NORAD for predicting prognosis of ESCC patients. The role of NORAD in CDDP resistance were determined by conducting gain and loss-of-function experiments in vitro. Fluorescence in situ hybridization (FISH) was performed to determine the subcellular location of NORAD in ESCC cells. A public GEO dataset and bioinformatic algorithms were used to predict the microRNAs (miRNAs) that might be latently sponged by NORAD. qRT-PCR was conducted to verify the expression of candidate miRNAs. Luciferase reporter and Argonaute-2 (Ago2)-RNA immunoprecipitation (RIP) assays were conducted to evaluate the interaction between NORAD and candidate miRNAs. A miRNA rescue experiment was performed to authenticate the NORAD regulatory axis and its effects on CDDP resistance in ESCC cells. Western blotting was conducted to confirm the precise downstream signalling pathway of NORAD. A xenograft mouse model was established to reveal the effect of NORAD on CDDP resistance in vivo. RESULTS: The expression of NORAD was higher in CDDP-resistant ESCC tissues and cells than in CDDP-sensitive tissues and cells. NORAD expression was negatively correlated with the postoperative prognosis of ESCC patients who underwent CDDP-based chemotherapy. NORAD knockdown partially arrested CDDP resistance of ESCC cells. FISH showed that NORAD was located in the cytoplasm in ESCC cells. Furthermore, overlapping results from bioinformatic algorithms analyses and qRT-PCR showed that NORAD could sponge miR-224-3p in ESCC cells. Ago2-RIP demonstrated that NORAD and miR-224-3p occupied the same Ago2 to form an RNA-induced silencing complex (RISC) and subsequently regulated the expression of metadherin (MTDH) in ESCC cells. The NORAD/miR-224-3p/MTDH axis promoted CDDP resistance and progression in ESCC cells by promoting nuclear accumulation of ß-catenin in vitro and in vivo. CONCLUSIONS: NORAD upregulates MTDH to promote CDDP resistance and progression in ESCC by sponging miR-224-3p. Our results highlight the potential of NORAD as a therapeutic target in ESCC patients receiving CDDP-based chemotherapy.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Adulto , Anciano , Animales , Línea Celular Tumoral , Biología Computacional , Modelos Animales de Enfermedad , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Interferencia de ARN , Curva ROC , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
9.
BMC Neurol ; 21(1): 472, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863109

RESUMEN

BACKGROUND: Clinical trials have shown that dexmedetomidine might decrease the occurrence of postoperative delirium after major surgery, but neurosurgical patients were excluded from these studies. We aimed to determine the feasibility of conducting a full-scale randomized controlled trial of the effect of prophylactic low-dose dexmedetomidine on postoperative delirium in patients after elective intracranial operation for brain tumors. METHODS: In this single-center, parallel-arm pilot randomized controlled trial, adult patients who underwent an elective intracranial operation for brain tumors were recruited. Dexmedetomidine (0.1 µg/kg/hour) or placebo was continuously infused from intensive care unit (ICU) admission on the day of surgery until 08:00 AM on postoperative day one. Adverse events during the study-drug administration were recorded. The primary feasibility endpoint was the occurrence of study-drug interruption. Delirium was assessed twice daily with the Confusion Assessment Method for the ICU during the first five postoperative days. The assessable rate of delirium evaluation was documented. RESULTS: Sixty participants were randomly assigned to receive either dexmedetomidine (n = 30) or placebo (n = 30). The study-drug was stopped in two patients (6.7%) in the placebo group due to desaturation after new-onset unconsciousness and an unplanned reoperation for hematoma evacuation and in one patient (3.3%) in the dexmedetomidine group due to unplanned discharge from the ICU. The absolute difference (95% confidence interval) of study-drug interruption between the two groups was 3.3% (- 18.6 to 12.0%), with a noninferiority P value of 0.009. During the study-drug infusion, no bradycardia occurred, and hypotension occurred in one patient (3.3%) in the dexmedetomidine group. Dexmedetomidine tended to decrease the incidence of tachycardia (10.0% vs. 23.3%) and hypertension (3.3% vs. 23.3%). Respiratory depression, desaturation, and unconsciousness occurred in the same patient with study-drug interruption in the placebo group (3.3%). Delirium was evaluated 600 times, of which 590 (98.3%) attempts were assessable except in one patient in the placebo group who remained in a coma after an unplanned reoperation. CONCLUSIONS: The low rate of study-drug interruption and high assessable rate of delirium evaluation supported a fully powered trial to determine the effectiveness of low-dose dexmedetomidine on postoperative delirium in patients after intracranial operation for brain tumors. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov (NCT04494828) on 31/07/2020.


Asunto(s)
Delirio , Dexmedetomidina , Adulto , Delirio/prevención & control , Dexmedetomidina/efectos adversos , Método Doble Ciego , Estudios de Factibilidad , Humanos , Proyectos Piloto
10.
Pharm Biol ; 58(1): 707-715, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32726164

RESUMEN

CONTEXT: Ursolic acid (UA), a natural product, shows a broad spectrum of anticancer effects. However, the poor bioavailability and efficacy of UA limit its clinical application. OBJECTIVE: We developed novel analogues of UA with enhanced antitumor activities by the extensive chemical modification of UA. MATERIALS AND METHODS: We developed multiple compounds by structural modification of UA, and found that UA232 had stronger activity than UA. The effects of UA232 (0-50 µM) on inhibiting the proliferation of A549 and H460 cells were determined by CCK-8 for 24, 48, or 72 h. The proapoptotic effect of UA232 was analyzed by microscopy and flow cytometry, and the potential signal pathway affected by UA232 was further validated by Western blotting and flow cytometry. RESULTS: Compared with UA, UA232 showed a stronger ability to inhibit the proliferation of lung cancer cells (IC50 = 5.4-6.1 µM for A549 and 3.9-5.7 µM for H460 cells). UA232 could induce not only cell cycle arrest in the G0/G1 phase but also apoptosis in both A549 and H460 cells. The treatment of UA232 could lead to an increase of CHOP expression rather than an increase in Bax or caspase-8, indicating that the apoptosis induced by UA232 was correlated with the endoplasmic reticulum stress (ER stress) pathway. Treatment with the ER stress-specific inhibitor, 4-PBA, decreased the ability of UA232 to induce apoptosis in A549 and H460 cells. CONCLUSION: UA232 induced apoptosis through the ER stress pathway, and showed stronger growth-inhibitory effects in A549 and H460 cells compared to UA, which may be a potential anticancer drug to suppress the proliferation of lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Triterpenos/farmacología , Células A549 , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Triterpenos/administración & dosificación , Triterpenos/química , Ácido Ursólico
11.
J Cell Biochem ; 120(3): 4644-4653, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30260023

RESUMEN

Oral squamous cell carcinoma (OSCC), the most common pathological type of oral cancer, is still a frequent malignancy with unsatisfactory prognosis. Accumulating studies have proven some microRNAs (miRNAs) can function as oncogenes in OSCC by targeting tumor suppressors. In this study, we first investigated the expression and role of tumor suppressor bridging integrator-1 (BIN1) in OSCC tissues and cells. Our results indicated that BIN1 was low expressed in the OSCC tissues and cell lines (SCC6, SCC9, SCC25, HN4, and HN6) along with miR-211 was highly expressed in OSCC tissues and cell lines, and BIN1 overexpression could evidently inhibit their proliferation, migration, and invasion abilities. Next, we used bioinformation algorithms to predict the potential miRNA targeting BIN1 and chose miR-211 for further study. miR-211, a highly expressed miRNA in OSCC cells, could specifically bind with the 3'-untranslated region (3'-UTR) of BIN1 to trigger its degradation. Addition of miR-211 inhibitor could evidently suppress the malignant behaviors of OSCC cells by upregulating BIN1 expression and inhibit the activation of the EGFR/MAPK pathway. Taken together the findings of the study indicated that miR-211 mediated BIN1 downregulation had crucial significances in OSCC, suggesting the miR-211 might be a novel potential therapeutic target for the OSCC treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Carcinoma de Células Escamosas/metabolismo , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Adulto , Anciano , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca , Invasividad Neoplásica
12.
Ecotoxicol Environ Saf ; 183: 109560, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31421536

RESUMEN

In the present study, to investigate the prevention mechanism of proanthocyanidins from lotus seedpod (LSPCs) on methyl mercuric chloride (MMC) induced neurotoxicity, neuron/astrocyte cells were co-cultured to simulate the microenvironment in vivo to the greatest extent. The results showed that, compared with MMC group, pretreatment with LSPCs not only improved cell survival rate, decreased the release of lactate dehydrogenase (LDH), decreased the intracellular reactive oxygen species (ROS) level, and prevented the increase of intracellular [Ca2+]i, but also significantly increased the total anti-oxidation capacity (T-AOC) (p<0.05), the levels of glutathione peroxidase (GSH-Px) (p<0.05), glutathione (GSH) (p<0.05), and mitochondrial membrane potential (MMP) (p<0.01). Besides, LSPCs up-regulated the expression of transcriptional factor Nrf2/HO-1 in a concentration-dependent manner. Moreover, LSPCs reduced the expression of Bax protein, significantly increased the expression of Bcl-xl, Bcl-2, ß-Ⅲ-Tubulin, SYN, and Arc proteins. The expression of these proteins is mainly regulated by genes and reflects the changes of genes functions. Taken together, these results suggested that LSPCs could enhance cellular antioxidant defense capacity through regulating the activation of Nrf2/HO-1, and involving the inhibition of mitochondria-mediated apoptotic signaling pathway.


Asunto(s)
Astrocitos/efectos de los fármacos , Lotus/química , Compuestos de Metilmercurio/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proantocianidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Intoxicación del Sistema Nervioso por Mercurio/prevención & control , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Proantocianidinas/aislamiento & purificación , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Semillas/química
13.
Molecules ; 23(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29966316

RESUMEN

Background: Dietary proteins are known for their wide range of nutritional, functional and biological properties. Although the total amount of proteins may be obtained from mixtures, its "availability" for absorption in the gut is in many cases quite uncertain or even varies for the same food depending on processing conditions, the presence of other components, and so on. Methods: To obtain accurate protein hydrolysate absorption data, we have developed a small intestine model (SIM) to test them. Results: The results indicated that the protein hydrolysates were absorbed rapidly during the first 15 min, and then decreased to 90 min, then they were absorbed again from 90 min to the endpoint. The protein absorption was also affected by the protein processing method used. The Enzyme + Ultrasound (EU) processing method group had a higher absorption rate than the Enzyme (E) processing method group, and the absorption of the Enzyme + Artificial gastric juice processing method (EH) and Enzyme + Ultrasound + Artificial gastric juice processing method (EUH) groups was reduced compared to the E group alone. The amino acid analysis results showed that the amino acids were reduced and absorbed by our SIM in almost all groups except for cysteine and methionine. In general, the Pearson relation value of the amino acid contents between before SIM and after SIM was 0.887, which indicated that single amino acid absorption was mainly related to its content in the whole amino acids. The single amino acid absorption ratio among different groups also displayed differences, which ranged from 31% to 46% (E group from 39% to 42%; EU group from 40% to 47%; EH group from 31% to 39%; EUH group from 35% to 41%). CONCLUSIONS: The protein hydrolysates' varied from startpoint to endpoint, and the protein absorption was affected by processing method.


Asunto(s)
Absorción Intestinal , Intestino Delgado/fisiología , Hidrolisados de Proteína/metabolismo , Aminoácidos/metabolismo , Animales , Proteínas en la Dieta/metabolismo , Hidrólisis , Mucosa Intestinal/metabolismo , Ratas , Factores de Tiempo
14.
Angew Chem Int Ed Engl ; 57(26): 7878-7882, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29733501

RESUMEN

Reported here is a novel dynamic biointerface based on reversible catechol-boronate chemistry. Biomimetically designed peptides with a catechol-containing sequence and a cell-binding sequence at each end were initially obtained. The mussel-inspired peptides were then reversibly bound to a phenylboronic acid (PBA) containing polymer-grafted substrate through sugar-responsive catechol-boronate interactions. The resultant biointerface is thus capable of dynamic presentation of the bioactivity (i.e. the cell-binding sequence) by virtue of changing sugar concentrations in the system (similar to human glycemic volatility). In addition, the sugar-responsive biointerface enables not only dynamic modulation of stem cell adhesion behaviors but also selective isolation of tumor cells. Considering the highly biomimetic nature and biological stimuli-responsiveness, this mussel-inspired dynamic biointerface holds great promise in both fundamental cell biology research and advanced medical applications.


Asunto(s)
Bivalvos/química , Separación Celular/métodos , Animales , Materiales Biocompatibles/química , Biomimética , Ácidos Borónicos/química , Catecoles/química , Humanos , Células MCF-7 , Tecnicas de Microbalanza del Cristal de Cuarzo
15.
Bioelectromagnetics ; 38(6): 436-446, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28570746

RESUMEN

This research investigated the influence of extremely low frequency magnetic fields (ELF-MF; 50 Hz, 8 mT, 4 h per day, for 28 days) on calcium ion signaling and the double messenger system in the hippocampus of mice. Messengers that were studied included: G-protein, Ins(1,4,5)P3 (IP3 ), diacylglycerol (DAG), cAMP-dependent protein kinase (PKA), and Ca2+ -dependent protein kinase C (PKC). The results showed that ELF-MF caused an increase in the levels of Gi protein, IP3, DAG, PKA and PKC beta, calcium and calmodulin-dependent protein phosphatase calcineuring (PP2B), and intracellular Ca2+ content, and a decrease in calcium/calmodulin-dependent protein kinase II (CaMK II) and PKC alpha. In addition, ELF-MF exposure decreased the level of brain-derived neurotrophic factor (BDNF), which played a key role in hippocampal neuronal cell death. However, oral administration of procyanidins from lotus seedpod (LSPCs) (especially 90 mg kg-1 ) significantly recovered these changes, and nearly reached normal levels. All these showed that LSPCs may mediate calcium signal and double messenger system through Ca2+ /CaMK II/CREB/BDNF and DG/PKC/MAPK signaling pathways to reverse the alteration caused by ELF-MF. Bioelectromagnetics. 38:436-446, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Biflavonoides/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/efectos de la radiación , Catequina/farmacología , Hipocampo/citología , Campos Magnéticos/efectos adversos , Magnoliopsida/química , Proantocianidinas/farmacología , Semillas/química , Animales , Biflavonoides/aislamiento & purificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Catequina/aislamiento & purificación , Diglicéridos/metabolismo , Proteínas de Unión al GTP/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/efectos de la radiación , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Proantocianidinas/aislamiento & purificación , Proteínas Quinasas/metabolismo
16.
Int J Cancer ; 137(5): 1095-106, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25683635

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) has been reported to be involved in esophageal squamous cell cancer (ESCC) progression by promoting immune escape. Previous studies have revealed bridging integrator-1 (Bin1) can inhibit cancer cell growth by suppressing expression of IDO, thus we investigated the correlation between the expression of Bin1 and IDO and their prognostic significances for ESCC patients. Specimens were collected from 196 ESCC patients and detected with flow cytometry, reverse transcription-polymerase chain reaction and immunohistochemistry. We found that in tumor microenvironment (TME) and tumor draining lymph node (TDLN), the proportions of CD3(+) CD4(+) T cell, CD3(+) CD8(+) T cell and CD3(-) CD16(+) CD56(+) NK cell were lower while the proportions of CD3(-) CD19(+) B cell and CD4(+) CD25(+) Treg were higher in specimens with high IDO expression when compared to the specimens with low IDO expression (p < 0.01). In addition, IDO expression was negatively correlated with Bin1 expression at gene and protein level in TME and TDLN. Both the expression of Bin1 and IDO were associated with some clinicopathological parameters including differentiation grade, TNM stage, invasion range, lymph node metastasis (p < 0.05). Moreover, multivariate survival analysis suggested that, along with some other parameters, low expression of Bin1 and high expression of IDO might be independent prognostic factor for ESCC patients. Our results demonstrate that low expression of Bin1, along with high expression of IDO, are predictor for poor prognosis in ESCC and thereby could be used to establish new therapeutic strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ganglios Linfáticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Nucleares/genética , Pronóstico , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética
17.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000747

RESUMEN

The characteristics of fiber morphology and paper structure are critical to the barrier properties of food packaging paper. Herein, this study aimed to use pulp fibrillation, paper semi-dry pressing and carboxymethyl starch (CMS) coating to flatten the fibers, which were formed on the paper surface with good barrier properties due to the tight bond between fibers. The results showed that the permeability of paper was reduced by 87.56%, from 81.44 µm/Pa·s to 10.13 µm/Pa·s after the pulp fibrillation treatment (60 °SR). Moreover, semi-dry pressing treatment contributed to decreasing the water vapor transmission coefficient (WVP) by 50.98% to 2.74 × 10-10 g/m·s·Pa, and the oxygen permeation coefficient (OP) decreased by 98.04% to 1.93 × 10-14 cm3·cm/cm2·s·Pa. After coating the paper surface with titanium dioxide (TiO2) and CMS, the WVP of the paper was further reduced to 1.55 × 10-10 g/m·s·Pa, and OP was reduced to 0.19 × 10-14 cm3·cm/cm2·s·Pa. These values were 72.27% and 99.8% lower than those of the original paper, respectively. Therefore, through pulp fibrillation, semi-dry pressing of paper, TiO2 filling, and surface coating with CMS, there is no need to use synthetic polymer surface film-forming agents to achieve the high barrier properties that are required for low water and oxygen molecules permeation in food packaging paper.

18.
Int J Biol Macromol ; 266(Pt 2): 131284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569984

RESUMEN

Low bioavailability of quercetin (Que) reduces its preclinical and clinical benefits. In order to improve Que bioavailability, a novel whey protein isolate (WPI)-zein nanogel was prepared by pH-driven self-assembly and heat-induced gelatinization. The results showed that hydrochloric acid can be substituted by both acetic acid and citric acid during the pH-driven process. After encapsulation, the bioavailability of Que in nanogels (composed of 70 % WPI) induced by different acidifiers increased to 19.89 % (citric acid), 21.65 % (hydrochloric acid) and 24.34 % (acetic acid), respectively. Comparatively, nanogels induced by acetic acid showed higher stability (pH and storage stability), re-dispersibility (75.62 %), Que bioavailability (24.34 %), and antioxidant capacity (36.78 % for DPPH scavenging rates). s improved performance of nanogels. In mechanism, acetic acid significantly balanced different intermolecular forces by weakening "acid-induced denaturation" effect. Moreover, the faster binding of Que and protein as well as higher protein molecular flexibility and randomness (higher ratio of random coil) was also observed in nanogels induced by acetic acid. All of these changes contributed to improve nanogels performances. Overall, WPI-zein nanogels induced by acetic acid might be a safe, efficiency and stable delivery system to improve the bioavailability of hydrophobic active ingredients.


Asunto(s)
Antioxidantes , Disponibilidad Biológica , Nanogeles , Quercetina , Proteína de Suero de Leche , Zeína , Quercetina/química , Quercetina/farmacología , Proteína de Suero de Leche/química , Zeína/química , Antioxidantes/química , Antioxidantes/farmacología , Nanogeles/química , Concentración de Iones de Hidrógeno , Ácido Acético/química , Polietileneimina/química , Polietilenglicoles/química , Estabilidad de Medicamentos , Portadores de Fármacos/química
19.
Int J Biol Macromol ; 267(Pt 2): 131504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604428

RESUMEN

In this study, based on response surface optimization of ultrasound pre-treatment conditions for encapsulating lycopene, the corn starch-glycyrrhiza polysaccharide composite (US-CS-GP) was used to prepare a novel lycopene inclusion complex (US-CS-GP-Lyc). Ultrasound treatment (575 W, 25 kHz) at 35 °C for 25 min significantly enhanced the rheological and starch properties of US-CS-GP, facilitating the preparation of US-CS-GP-Lyc with an encapsulation efficiency of 76.12 ±â€¯1.76 %. In addition, the crystalline structure, thermal properties, and microstructure of the obtained lycopene inclusion complex were significantly improved and showed excellent antioxidant activity and storage stability. The US-CS-GP-Lyc exhibited a V-type crystal structure, enhanced lycopene loading capacity, and reduced crystalline regions due to increased amorphous regions, as well as superior thermal properties, including a lower maximum thermal decomposition rate and a higher maximum decomposition temperature. Furthermore, its smooth surface with dense pores provides enhanced space and protection for lycopene loading. Moreover, the US-CS-GP-Lyc displayed the highest DPPH scavenging rate (92.20 %) and enhanced stability under light and prolonged storage. These findings indicate that ultrasonic pretreatment can boost electrostatic forces and hydrogen bonding between corn starch and glycyrrhiza polysaccharide, enhance composite properties, and improve lycopene encapsulation, which may provide a scientific basis for the application of ultrasound technology in the refined processing of starch-polysaccharides composite products.


Asunto(s)
Licopeno , Polisacáridos , Almidón , Licopeno/química , Almidón/química , Polisacáridos/química , Zea mays/química , Antioxidantes/química , Reología , Ondas Ultrasónicas , Carotenoides/química
20.
Int J Biol Macromol ; 261(Pt 2): 129833, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302021

RESUMEN

In this study, the ginger polysaccharides extracted from hot water (HW-G) were modified with subcritical water (SW-G) to effectively regulate their immune activity, and the relationship between polysaccharide chain conformation and immune activity at different subcritical water temperatures was investigated. The results indicated that, compared with HW-G, the xylose and mannose were degraded at high temperatures. The molecular weight of ginger polysaccharide decreased from 1.083 × 106 g/mol to 3.113 × 105 g/mol after subcritical water modification (100-160 °C). The chain conformation transitioned from rigid rod chain to semi-rigid chain and eventually to random coil. The degree of relaxation of the polysaccharide chains showed a continuous increase trend. Additionally, ginger polysaccharide modified by subcritical water at 130 °C was found to promote the proliferation and phagocytosis of 264.7 cells more obviously and signally increase the secretion levels of NO, IL-6, TNF-α and IL-1ß. When the subcritical water temperature exceeds 130 °C, the activity of ginger polysaccharide begins to decline rapidly. These findings demonstrate a close correlation between polysaccharide chain conformation and immunomodulatory activity, confirming the feasibility of the subcritical water temperature effect as a means of immune activity regulation, which opens up a new approach to obtaining highly active polysaccharides.


Asunto(s)
Agua , Zingiber officinale , Temperatura , Polisacáridos/farmacología , Antioxidantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA