Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38634496

RESUMEN

We present comprehensive numerical results from a study of model H, which describes phase separation kinetics in binary fluid mixtures. We study the pattern dynamics of both density and velocity fields in d = 2, 3. The density length scales show three distinct regimes, in accordance with analytical arguments. The velocity length scale shows a diffusive behavior. We also study the scaling behavior of the morphologies for density and velocity fields and observe dynamical scaling in the relevant correlation functions and structure factors. Finally, we study the effect of quenched random field disorder on spinodal decomposition in model H.

2.
Phys Rev Lett ; 114(23): 234502, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26196805

RESUMEN

Self-sustained reaction fronts in a disordered medium subject to an external flow display self-affine roughening, pinning, and depinning transitions. We measure spatial and temporal fluctuations of the front in 1+1 dimensions, controlled by a single parameter, the mean flow velocity. Three distinct universality classes are observed, consistent with the Kardar-Parisi-Zhang (KPZ) class for fast advancing or receding fronts, the quenched KPZ class (positive-qKPZ) when the mean flow approximately cancels the reaction rate, and the negative-qKPZ class for slowly receding fronts. Both qKPZ classes exhibit distinct depinning transitions, in agreement with the theory.


Asunto(s)
Modelos Teóricos , Difusión , Cristales Líquidos , Dinámicas no Lineales
3.
Phys Rev Lett ; 109(17): 178001, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215224

RESUMEN

Brownian motion in a granular gas in a homogeneous cooling state is studied theoretically and by means of molecular dynamics. We use the simplest first-principles model for the impact-velocity dependent restitution coefficient, as it follows for the model of viscoelastic spheres. We reveal that for a wide range of initial conditions the ratio of granular temperatures of Brownian and bath particles demonstrates complicated nonmonotonic behavior, which results in a transition between different regimes of Brownian dynamics: It starts from the ballistic motion, switches later to a superballistic one, and turns at still later times into subdiffusion; eventually normal diffusion is achieved. Our theory agrees very well with the molecular dynamics results, although extreme computational costs prevented us from detecting the final diffusion regime. Qualitatively, the reported intermediate diffusion regimes are generic for granular gases with any realistic dependence of the restitution coefficient on the impact velocity.

4.
Artículo en Inglés | MEDLINE | ID: mdl-24827180

RESUMEN

Reaction fronts evolving in a porous medium exhibit a rich dynamical behavior. In the presence of an adverse flow, experiments show that the front slows down and eventually gets pinned, displaying a particular sawtooth shape. Extensive numerical simulations of the hydrodynamic equations confirm the experimental observations. Here we propose a stylized model, predicting two possible outcomes of the experiments for large adverse flow: either the front develops a sawtooth shape or it acquires a complicated structure with islands and overhangs. A simple criterion allows one to distinguish between the two scenarios and its validity is reproduced by direct hydrodynamical simulations. Our model gives a better understanding of the transition and is relevant in a variety of domains, when the pinning regime is strong and only relies on a small number of sites.

5.
Artículo en Inglés | MEDLINE | ID: mdl-23848666

RESUMEN

We perform large-scale event-driven molecular dynamics (MD) simulations for granular gases of particles interacting with the impact-velocity-dependent restitution coefficient ε(v(imp)). We use ε(v(imp)) as it follows from the simplest first-principles collision model of viscoelastic spheres. Both cases of force-free and uniformly heated gases are studied. We formulate a simplified model of an effective constant restitution coefficient ε(eff), which depends on a current granular temperature, and we compute ε(eff) using the kinetic theory. We develop a theory of the velocity distribution function for driven gases of viscoelastic particles and analyze the evolution of granular temperature and of the Sonine coefficients, which characterize the form of the velocity distribution function. We observe that for not large dissipation the simulation results are in an excellent agreement with the theory for both the homogeneous cooling state and uniformly heated gases. At the same time, a noticeable discrepancy between the theory and MD results for the Sonine coefficients is detected for large dissipation. We analyze the accuracy of the simplified model based on the effective restitution coefficient ε(eff), and we conclude that this model can accurately describe granular temperature. It provides also an acceptable accuracy for the velocity distribution function for small dissipation, but it fails when dissipation is large.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA