Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Analyst ; 148(11): 2633-2643, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191127

RESUMEN

A novel enhanced fluorescent sensor system for zearalenone (ZON) determination in flour samples is presented. The ZON-selective molecularly imprinted polymer (MIP) films were developed with a computational modelling method and synthesised with cyclododecyl-2,4-dihydroxybenzoate as a "dummy" template and ethylene glycol methacrylate phosphate as a functional monomer acted as the selective recognition elements for ZON fluorescence detection. Spherical silver nanoparticles (AgNPs) were embedded in the MIP films' structure to enhance the sensor sensitivity. The imprinted films showed a high ZON recognition ability compared to non-imprinted films. Various factors that affected the measurement of the analysed sample were investigated and optimised. Embedding the AgNPs in the MIP films' structure led to an enhanced sensitivity (up to a 200-fold decrease of LOD) compared to unmodified MIP films. This fluorescent sensor system provided ZON analysis with high sensitivity, specificity, and a wider linear dynamic range of 5 ng mL-1 to 25 µg mL-1. An enhanced fluorescent sensor system based on MIP chips with embedded AgNPs could detect trace amounts of ZON in foods and feedstuffs with high sensitivity and selectivity.


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Zearalenona , Polímeros Impresos Molecularmente , Plata , Nanopartículas del Metal/química , Polímeros/química , Impresión Molecular/métodos
2.
Biochem J ; 476(4): 719-732, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30718305

RESUMEN

d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2'-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Biosíntesis de Proteínas/fisiología , ARN Bacteriano , Aminoacil-ARN de Transferencia , Thermus thermophilus , Proteínas Bacterianas/química , Catálisis , Hidrólisis , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , Thermus thermophilus/química , Thermus thermophilus/metabolismo
3.
Sensors (Basel) ; 20(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752255

RESUMEN

The combination of the generic mobile technology and inherent stability, versatility and cost-effectiveness of the synthetic receptors allows producing optical sensors for potentially any analyte of interest, and, therefore, to qualify as a platform technology for a fast routine analysis of a large number of contaminated samples. To support this statement, we present here a novel miniature sensor based on a combination of molecularly imprinted polymer (MIP) membranes and a smartphone, which could be used for the point-of-care detection of an important food contaminant, oestrogen-like toxin zearalenone associated with Fusarium contamination of cereals. The detection is based on registration of natural fluorescence of zearalenone using a digital smartphone camera after it binds to the sensor recognition element. The recorded image is further processed using a mobile application. It shows here a first example of the zearalenone-specific MIP membranes synthesised in situ using "dummy template"-based approach with cyclododecyl 2, 4-dihydroxybenzoate as the template and 1-allylpiperazine as a functional monomer. The novel smartphone sensor system based on optimized MIP membranes provides zearalenone detection in cereal samples within the range of 1-10 µg mL-1 demonstrating a detection limit of 1 µg mL-1 in a direct sensing mode. In order to reach the level of sensitivity required for practical application, a competitive sensing mode is also developed. It is based on application of a highly-fluorescent structural analogue of zearalenone (2-[(pyrene-l-carbonyl) amino]ethyl 2,4-dihydroxybenzoate) which is capable to compete with the target mycotoxin for the binding to zearalenone-selective sites in the membrane's structure. The competitive mode increases 100 times the sensor's sensitivity and allows detecting zearalenone at 10 ng mL-1. The linear dynamic range in this case comprised 10-100 ng mL-1. The sensor system is tested and found effective for zearalenone detection in maize, wheat and rye flour samples both spiked and naturally contaminated. The developed MIP membrane-based smartphone sensor system is an example of a novel, inexpensive tool for food quality analysis, which is portable and can be used for the "field" measurements and easily translated into the practice.


Asunto(s)
Fusarium , Impresión Molecular , Grano Comestible , Contaminación de Alimentos/análisis , Polímeros Impresos Molecularmente , Polímeros , Teléfono Inteligente
4.
J Fluoresc ; 25(4): 1013-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26076929

RESUMEN

Binding of a novel cationic porphyrin-imidazophenazine conjugate, TMPyP(3+)-ImPzn, to four-stranded poly(G) was investigated in aqueous solutions of neutral pH under near physiological ionic conditions using absorption, polarized fluorescent spectroscopy and fluorescence titration techniques. In absence of the polymer the conjugate folds into stable internal heterodimer with stacking between the porphyrin and phenazine chromophores. Binding of TMPyP(3+)-ImPzn to poly(G) is realized by two competing ways. At low polymer-to-dye ratio (P/D < 6) outside electrostatic binding of the cationic porphyrin moieties of the conjugate to anionic polynucleotide backbone with their self-stacking is predominant. It is accompanied by heterodimer dissociation and distancing of phenazine moieties from the polymer. This binding mode is characterized by strong quenching of the conjugate fluorescence. Increase of P/D results in the disintegration of the porphyrin stacks and redistribution of the bound conjugate molecules along the polymer chain. At P/D > 10 another binding mode becomes dominant, embedding of TMPyP(3+)-ImPzn heterodimers into poly(G) groove as a whole is occurred.


Asunto(s)
Morfolinas/química , Fenazinas/química , Poli G/química , Polímeros/química , Porfirinas/química , Espectrometría de Fluorescencia/métodos , Sitios de Unión , Dicroismo Circular , Fluorescencia , Morfolinas/metabolismo , Fenazinas/metabolismo , Poli G/metabolismo , Polímeros/metabolismo , Porfirinas/metabolismo
5.
J Fluoresc ; 25(6): 1897-904, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26449960

RESUMEN

The binding of telomerase inhibitor ZnTMPyP(3+)-ImPzn, Zn(II) derivative of tricationic porphyrin-imidazophenazine conjugate, to tetramolecular quadruplex structure formed by poly(G) was studied in aqueous solutions at neutral pH and near physiological ionic strength using absorption and polarized fluorescent spectroscopy techniques. Three binding modes were determined from the dependences of the fluorescence intensity and polarization degree for the porphyrin and phenazine moieties of the conjugate on molar polymer-to-dye ratio (P/D). The first one is outside electrostatic binding of positively charged porphyrin fragments to anionic phosphate groups of the polymer which prevails only at very low P/D values and manifests itself by substantial fluorescence quenching. It is suggested that the formation of externally bound porphyrin dimers occurs. The other two binding modes observed at high P/D are embedding of the ZnTMPyP(3+) moiety into the groove of poly(G) quadruplex accompanied by more than 3-fold enhancement of the conjugate emission, and simultaneous intercalation of the phenazine fragment between the guanine bases accompanied by the increase of its fluorescence polarization degree up to 0.25. Thus Zn(II) conjugate seems to be promising ligand for the stabilization of G-quadruplex structures since porphyrin binding to poly(G) is strengthened by additional intercalation of phenazine moiety.


Asunto(s)
G-Cuádruplex , Metaloporfirinas/química , Fenazinas/química , Poli G/química , Zinc/química , Secuencia de Bases , Poli G/genética , Espectrometría de Fluorescencia
6.
ACS Omega ; 8(12): 11564-11573, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008079

RESUMEN

Coumarin-based fluorescent agents play an important role in the manifold fundamental scientific and technological areas and need to be carefully studied. In this research, linear photophysics, photochemistry, fast vibronic relaxations, and two-photon absorption (2PA) of the coumarin derivatives, methyl 4-[2-(7-methoxy-2-oxo-chromen-3-yl)thiazol-4-yl]butanoate (1) and methyl 4-[4-[2-(7-methoxy-2-oxo-chromen-3-yl)thiazol-4-yl]phenoxy]butanoate (2), were comprehensively analyzed using stationary and time-resolved spectroscopic techniques, along with quantum-chemical calculations. The steady-state one-photon absorption, fluorescence emission, and excitation anisotropy spectra, as well as 3D fluorescence maps of 3-hetarylcoumarins 1 and 2 were obtained at room temperature in solvents of different polarities. The nature of relatively large Stokes shifts (∼4000-6000 cm-1), specific solvatochromic behavior, weak electronic π → π* transitions, and adherence to Kasha's rule were revealed. The photochemical stability of 1 and 2 was explored quantitatively, and values of photodecomposition quantum yields, on the order of ∼10-4, were determined. A femtosecond transient absorption pump-probe technique was used for the investigation of fast vibronic relaxation and excited-state absorption processes in 1 and 2, while the possibility of efficient optical gain was shown for 1 in acetonitrile. The degenerate 2PA spectra of 1 and 2 were measured by an open aperture z-scan method, and the maximum 2PA cross-sections of ∼300 GM were obtained. The electronic nature of the hetaryl coumarins was analyzed by quantum-chemical calculations using DFT/TD-DFT level of theory and was found to be in good agreement with experimental data.

7.
Anal Biochem ; 420(2): 115-20, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22005321

RESUMEN

A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications.


Asunto(s)
Aminas/química , Compuestos de Boro/química , Colorantes Fluorescentes/química , Muramidasa/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Espectrometría de Fluorescencia , Especificidad por Sustrato
8.
J Fluoresc ; 22(6): 1431-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22752430

RESUMEN

The effect of imidazo[4,5-d]phenazine (Pzn) attached to the 5(')-end of (dT)(15) oligonucleotide via a flexible linker on the thermal stability of poly(dA)·(dT)(15) duplex was studied in aqueous buffered solution containing 0.1 М NaCl at the equimolar ratio of adenine and thymine bases (100 µM each) using spectroscopic techniques. Duplex formation was investigated by measuring UV absorption and fluorescence melting curves for the Pzn-modified system. Tethered phenazine derivative enhances the thermostability of poly(dA)·(dT)(15) duplex increasing the helix-to-coil transition temperature by 4.5 °Ð¡ due to an intercalation of the dye chromophore between AT-base pairs. The thermodynamic parameters of the transition for non-modified and modified systems were estimated using "all-or-none" model. The modification of the (dT)(15) results in a decrease in the transition enthalpy, however, the observed gain in the Gibbs free energy of complex formation, ΔG, is provided with the corresponding decrease in entropy change. The increase of ΔG value at 37 °C in consequence of (dT)(15) modification was found to be equal to 1.3 kcal/mol per oligonucleotide strand.


Asunto(s)
Imidazoles/química , Oligonucleótidos/química , Fenazinas/química , Poli dA-dT/química , Aminas/química , Estabilidad de Medicamentos , Conformación Molecular , Análisis Espectral , Termodinámica , Temperatura de Transición
9.
J Phys Chem B ; 124(42): 9343-9353, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32975118

RESUMEN

We report a comprehensive quantum-chemical study on d(A)5·d(T)5 and d(G)5·d(C)5 DNA mini-helixes and the Dickerson dodecamer d[CGCGAATTCGCG]. The research was performed to model the evolution of the spatial structure of d(A)5·d(T)5 and d(G)5 d(C)5 DNA mini-helixes all the way from vacuum to water bulk. The influence of external factors such as the presence of counterions and the extent of hydration was included. Also, for comparison, limited calculations have been carried out on the Dickerson dodecamer. The study has been performed at the density functional theory level using B97D3 and ωB97XD exchange-correlation functionals augmented by the Def2SVP basis set. We found that the (dA)5·(dT)5 anion when placed in vacuum forms a DNA duplex, which possesses an intermediate form between a helix and a ladder. The presence of compensating Na+ counterions or explicit microhydration of minor and major grooves stabilizes a DNA mini-helix of B-shape. Factors such as water bulk play a minor role. Somewhat different behavior has been found in the case of the (dG)5·(dC)5 duplex. In this case, we observe the formation of B-type mini-helixes even for the (dG)5·(dC)5 anion placed in vacuum. This is due to an additional stabilization originated from the appearance of an extra hydrogen bond, compared to an AT base pair. To assess whether the obtained results are transferable to different sizes of mini-helixes, similar calculations have been performed for the duplex formed by the Dickerson dodecamer which contains a total of 12 dG·dC and dA·dT base pairs. It has been found that in vacuum, analogous to the d(A)5·d(T)5 duplex, this system possesses a shape which is also quite close to a ladder. However, the presence of factors such as hydration restores the B-type geometry. Also, our results completely in line with the results of electrospray-ionization experiments suggest that uncompensated by counterions the DNA backbone preserves the duplex geometry in vacuum. We present arguments that this state is kinetically unstable.


Asunto(s)
ADN , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico
10.
Ann N Y Acad Sci ; 1130: 293-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18596362

RESUMEN

The cooperative binding of a novel water-soluble cationic derivative of pheophorbide-a (CatPheo-a) to inorganic polyphosphate (PPS) in buffered aqueous solutions was studied by means of polarized fluorescence spectroscopy in a wide range of molar phosphate-to-dye ratios (P/D). Under low P/D values, CatPheo-a forms extended stacking associates on the PPS matrix, while under high P/D the dye binds to PPS in the dimer form. The CatPheo-a self-association is accompanied by 40-fold dye fluorescence quenching and a substantial increase in the fluorescence polarization degree. The fluorescent titration data were used for determination of cooperative binding parameters by Schwarz's method.


Asunto(s)
Clorofila/análogos & derivados , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Polifosfatos/química , Absorción , Cationes , Clorofila/química , Dimerización , Humanos , Cinética , Modelos Químicos , Fotoquímica/métodos , Polímeros/química , Solubilidad , Electricidad Estática
11.
J Biomol Struct Dyn ; 35(3): 669-682, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26886480

RESUMEN

Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNAPro. The most important functional element of this catalytic mechanism is the 2'-OH group of the terminal adenosine 76 of Ala-tRNAPro, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3'-O atom of A76.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , ARN de Transferencia/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Bacterias/enzimología , Bacterias/genética , Dominio Catalítico , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Conformación Molecular , Unión Proteica , ARN de Transferencia/metabolismo , Relación Estructura-Actividad
12.
Methods Appl Fluoresc ; 4(3): 034005, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28355151

RESUMEN

The interaction of a tricationic water-soluble meso-(N-methylpyridinium)-substituted porphyrin, TMPyP3+, derived from classic TMPyP4, with double-stranded poly(G) ⋅ poly(C) and four-stranded poly(G) polyribonucleotides has been studied in aqueous buffered solutions, pH 6.9, of low and near-physiological ionic strengths in a wide range of molar phosphate-to-dye ratios (P/D). To clarify the binding modes of TMPyP3+ to biopolymers various spectroscopic techniques, including absorption and polarized fluorescence spectroscopy, Raman spectroscopy, and resonance light scattering, were used. As a result, two competitive binding modes were revealed. In solution of low ionic strength outside binding of the porphyrin to the polynucleotide backbone with self-stacking prevailed at low P/D ratios (P/D < 3.5). It manifested itself by the substantial quenching of porphyrin fluorescence. Also the formation of large-scale porphyrin aggregates was observed near the stoichiometric binding ratio. The spectral changes observed at P/D > 30 including emission enhancement were supposed to be caused by the embedding of partially stacked porphyrin J-dimers into the polymer groove. TMPyP3+ binding to poly(G) induced a fluorescence increase 2.5 times as large as that observed for poly(G) ⋅ poly(C). In solution of near-physiological ionic strength the efficiency of external porphyrin binding was reduced substantially due to the competitive binding of Na+ ions with the polymer backbone. The spectroscopic characteristics of porphyrin bound to polynucleotides at different conditions were compared with those for free porphyrin.


Asunto(s)
Porfirinas/química , Sitios de Unión , Dicroismo Circular , Guanina , Poli G , Polidesoxirribonucleótidos , Polirribonucleótidos , Espectrometría de Fluorescencia
13.
Biophys Chem ; 185: 39-46, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24333916

RESUMEN

Self-assemblies formed by the new synthesized tricationic porphyrin derivative (TMPyP(3+)) on the polyanionic inorganic polyphosphate (PPS) in aqueous solution were studied using different spectroscopic techniques and DFT calculation method. From the fluorescence quenching of the bound TMPyP(3+) molecules and their Raman spectra we conclude that porphyrin chromophores form the stable π-π stacking-assemblies onto PPS polyanions. The transformation of the Soret band in absorption spectra at different PPS/TMPyP(3+)concentration ratios evidences that the assemblies are mixtures of J- and H-aggregates. Molecular modeling performed shows that the flexibility of PPS strand allows a realization of spiral or "face-to-face" one-dimensional structures formed by porphyrin molecules arranged in parallel and antiparallel modes. The peculiarity of PPS structure allows a formation of two porphyrin stacks on opposite sides of polymer strands that result in the appearance of higher-order aggregates. Their size was estimated from the light scattering data. Distinctions between TMPyP(3+) and TMPyP4 aggregation on PPS template are discussed.


Asunto(s)
Polifosfatos/química , Porfirinas/química , Fluorescencia , Luz , Modelos Moleculares , Polielectrolitos , Polímeros/química , Dispersión de Radiación
14.
J Inorg Biochem ; 124: 42-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23598064

RESUMEN

Coordination and organoelement compounds are rarely proposed as the drug candidates despite their vast potential in the area owing to their strictly controlled geometry and rather extensive surface. This is the first example of the inhibition of transcription in the system of T7 RNA polymerase by cage metal complexes. Their IC50 values reach as low as the nanomolar range, placing them among the most potent metal-based transcription inhibitors.


Asunto(s)
Bacteriófago T7/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Compuestos de Hierro/farmacología , Transcripción Genética/efectos de los fármacos , Proteínas Virales/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Compuestos de Hierro/química , Proteínas Virales/química
15.
J Biomol Struct Dyn ; 29(6): 597-605, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22545991

RESUMEN

Ab initio quantum-chemical study of specific point contacts of replisome proteins with DNA modeled by acetic acid with canonical and mutagenic tautomers of DNA bases methylated at the glycosidic nitrogen atoms was performed in vacuo and continuum with a low dielectric constant (ϵ ∼ 4) corresponding to a hydrophobic interface of protein-nucleic acid interaction. All tautomerized complexes were found to be dynamically unstable, because the electronic energies of their back-reaction barriers do not exceed zero-point vibrational energies associated with the vibrational modes whose harmonic vibrational frequencies become imaginary in the transition states of the tautomerization reaction. Additionally, based on the physicochemical arguments, it was demonstrated that the effects of biomolecular environment cannot ensure dynamic stabilization. This result allows suggesting that hypothetically generated by DNA-binding proteins of replisome rare tautomers will have no impact on the total spontaneous mutation due to the low reverse barrier allowing a quick return to the canonical form.


Asunto(s)
Proteínas de Unión al ADN/química , Nucleótidos/química , Teoría Cuántica , Proteínas de Unión al ADN/metabolismo , Guanina/química , Enlace de Hidrógeno , Modelos Químicos , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Replicón , Termodinámica , Agua/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-21888549

RESUMEN

Carboxyalkyl derivative of the intercalating agent imidazo[4,5-b]phenazine was used for the postsynthetic oligonucleotide modification. Model pentadecathymidylate-imidazophenazine conjugate was prepared from 5'-aminoalkyl-modified (dT)(15) by using phosphonium coupling reagent BOP in the presence of 1-hydroxybenzotriazole. Spectral-fluorescent properties of the conjugate were studied. The attachment of the dye was found to increase the thermal stability of (dT)(15) duplex with poly(dA) by more than 4°C, probably by the intercalation mechanism.


Asunto(s)
Colorantes/química , Imidazoles/química , Oligonucleótidos/química , Fenazinas/química , Sustancias Intercalantes/química , Conformación de Ácido Nucleico , Oligonucleótidos/síntesis química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA