Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Comput Biol ; 19(8): e1011402, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603551

RESUMEN

When bacterial species with the same resource preferences share the same growth environment, it is commonly believed that direct competition will arise. A large variety of competition and more general 'interaction' models have been formulated, but what is currently lacking are models that link monoculture growth kinetics and community growth under inclusion of emerging biological interactions, such as metabolite cross-feeding. In order to understand and mathematically describe the nature of potential cross-feeding interactions, we design experiments where two bacterial species Pseudomonas putida and Pseudomonas veronii grow in liquid medium either in mono- or as co-culture in a resource-limited environment. We measure population growth under single substrate competition or with double species-specific substrates (substrate 'indifference'), and starting from varying cell ratios of either species. Using experimental data as input, we first consider a mean-field model of resource-based competition, which captures well the empirically observed growth rates for monocultures, but fails to correctly predict growth rates in co-culture mixtures, in particular for skewed starting species ratios. Based on this, we extend the model by cross-feeding interactions where the consumption of substrate by one consumer produces metabolites that in turn are resources for the other consumer, thus leading to positive feedback in the species system. Two different cross-feeding options were considered, which either lead to constant metabolite cross-feeding, or to a regulated form, where metabolite utilization is activated with rates according to either a threshold or a Hill function, dependent on metabolite concentration. Both mathematical proof and experimental data indicate regulated cross-feeding to be the preferred model to constant metabolite utilization, with best co-culture growth predictions in case of high Hill coefficients, close to binary (on/off) activation states. This suggests that species use the appearing metabolite concentrations only when they are becoming high enough; possibly as a consequence of their lower energetic content than the primary substrate. Metabolite sharing was particularly relevant at unbalanced starting cell ratios, causing the minority partner to proliferate more than expected from the competitive substrate because of metabolite release from the majority partner. This effect thus likely quells immediate substrate competition and may be important in natural communities with typical very skewed relative taxa abundances and slower-growing taxa. In conclusion, the regulated bacterial interaction network correctly describes species substrate growth reactions in mixtures with few kinetic parameters that can be obtained from monoculture growth experiments.


Asunto(s)
Grupos Minoritarios , Física , Especificidad de la Especie , Técnicas de Cocultivo , Cinética
2.
Nat Commun ; 15(1): 2557, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519488

RESUMEN

Microbiome engineering - the targeted manipulation of microbial communities - is considered a promising strategy to restore ecosystems, but experimental support and mechanistic understanding are required. Here, we show that bacterial inoculants for soil microbiome engineering may fail to establish because they inadvertently facilitate growth of native resident microbiomes. By generating soil microcosms in presence or absence of standardized soil resident communities, we show how different nutrient availabilities limit outgrowth of focal bacterial inoculants (three Pseudomonads), and how this might be improved by adding an artificial, inoculant-selective nutrient niche. Through random paired interaction assays in agarose micro-beads, we demonstrate that, in addition to direct competition, inoculants lose competitiveness by facilitating growth of resident soil bacteria. Metatranscriptomics experiments with toluene as selective nutrient niche for the inoculant Pseudomonas veronii indicate that this facilitation is due to loss and uptake of excreted metabolites by resident taxa. Generation of selective nutrient niches for inoculants may help to favor their proliferation for the duration of their intended action while limiting their competitive loss.


Asunto(s)
Inoculantes Agrícolas , Microbiota , Suelo , Bacterias/genética , Proliferación Celular , Microbiología del Suelo
3.
J Virol Methods ; 296: 114225, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216645

RESUMEN

Enterovirus (EV) infectivity is typically measured as a bulk parameter, yet EV serotypes vary in their susceptibility to natural and engineered stressors. Here we developed an integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method to simultaneously and specifically quantify the infectious concentrations of eight EV serotypes commonly encountered in sewage (coxsackieviruses A9, B1, B2, B3, B4 and B5, and echoviruses 25 and 30). The method uses two cell lines for virus replication and serotype-specific qPCR primers for quantification. Primers were designed to target multiple environmental strains of a given serotype and displayed high specificity. The ICC-RTqPCR method exhibited a linear calibration range between 50 and 1000 (echoviruses) or 5000 (coxsackieviruses) infectious units per mL. Over this range, measurements were not influenced by the presence of non-target serotypes, and calibration slopes were reproducible for different virus batches and cell ages. The ICC-RTqPCR method was able to accurately quantify the infectious concentration of a virus after inactivation by heat, and the concentration of a virus within a wastewater matrix. This method will be valuable to assess the differing fates of EV serotypes in natural or engineered systems, and to portray the associated changes in EV population composition.


Asunto(s)
Enterovirus , Técnicas de Cultivo de Célula , Enterovirus/genética , ADN Polimerasa Dirigida por ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serogrupo
4.
Commun Biol ; 4(1): 492, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888858

RESUMEN

Interspecific interactions are thought to govern the stability and functioning of microbial communities, but the influence of the spatial environment and its structural connectivity on the potential of such interactions to unfold remain largely unknown. Here we studied the effects on community growth and microbial diversity as a function of environmental connectivity, where we define environmental connectivity as the degree of habitat fragmentation preventing microbial cells from living together. We quantitatively compared growth of a naturally-derived high microbial diversity community from soil in a completely mixed liquid suspension (high connectivity) to growth in a massively fragmented and poorly connected environment (low connectivity). The low connectivity environment consisted of homogenously-sized miniature agarose beads containing random single or paired founder cells. We found that overall community growth was the same in both environments, but the low connectivity environment dramatically reduced global community-level diversity compared to the high connectivity environment. Experimental observations were supported by community growth modeling. The model predicts a loss of diversity in the low connectivity environment as a result of negative interspecific interactions becoming more dominant at small founder species numbers. Counterintuitively for the low connectivity environment, growth of isolated single genotypes was less productive than that of random founder genotype cell pairs, suggesting that the community as a whole profited from emerging positive interspecific interactions. Our work demonstrates the importance of environmental connectivity for growth of natural soil microbial communities, which aids future efforts to intervene in or restore community composition to achieve engineering and biotechnological objectives.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Microbiota , Microbiología del Suelo , Bacterias/clasificación
5.
Sci Rep ; 7(1): 8245, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811596

RESUMEN

The Escherichia coli RbsB ribose binding protein has been used as a scaffold for predicting new ligand binding functions through in silico modeling, yet with limited success and reproducibility. In order to possibly improve the success of predictive modeling on RbsB, we study here the influence of individual residues on RbsB-mediated signaling in a near complete library of alanine-substituted RbsB mutants. Among a total of 232 tested mutants, we found 10 which no longer activated GFPmut2 reporter expression in E. coli from a ribose-RbsB hybrid receptor signaling chain, and 13 with significantly lower GFPmut2 induction than wild-type. Quantitative mass spectrometry abundance measurements of 25 mutants and wild-type RbsB in periplasmic space showed four categories of effects. Some (such as D89A) seem correctly produced and translocated but fail to be induced with ribose. Others (such as N190A) show lower induction probably as a result of less efficient production, folding and translocation. The third (such as N41A or K29A) have defects in both induction and abundance. The fourth category consists of semi-constitutive mutants with increased periplasmic abundance but maintenance of ribose induction. Our data show how RbsB modeling should include ligand-binding as well as folding, translocation and receptor binding.


Asunto(s)
Alanina/química , Alanina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Imagen Molecular , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Transducción de Señal , Sustitución de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Mutación , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Transporte de Proteínas , Ribosa/metabolismo
6.
PLoS One ; 11(11): e0165850, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812150

RESUMEN

The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genómica , Pseudomonas/genética , Pseudomonas/metabolismo , Contaminantes del Suelo/metabolismo , Tolueno/metabolismo , Biodegradación Ambiental , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/genética , Pseudomonas/efectos de los fármacos , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/toxicidad , Tolueno/aislamiento & purificación , Tolueno/toxicidad
7.
Gut Pathog ; 7: 24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26346801

RESUMEN

BACKGROUND: Salmonella enterica serovar Enteritidis, the most common cause of human gastroenteritis, employs several virulence factors including lipopolysaccharide (LPS) for infection and establishment of disease inside the host. The LPS of S. enterica serovar Enteritidis consists of lipid A, core oligosaccharide and O-antigen (OAg). The OAg consists of repeating units containing different sugars. The sugars of OAg are synthesized and assembled by a set of enzymes encoded by genes organized into clusters. Present study focuses on the effect of deletion of genes involved in biosynthesis of OAg repeating units on resistance to antimicrobial peptides and virulence in mice. METHODS: In the present study, the OAg biosynthesis was impaired by deleting tyv, prt and wbaV genes involved in tyvelose biosynthesis and its transfer to OAg. The virulence phenotype of resulting mutants was evaluated by assessing resistance to antimicrobial peptides, serum complement, adhesion, invasion and in vivo colonization. RESULTS: Deletion of the above three genes resulted in the production of OAg-negative LPS. All the OAg-negative mutants showed phenotype reported for rough strains. Interestingly, ΔwbaV mutant showed increased resistance against antimicrobial peptides and normal human serum. In addition, the ΔwbaV mutant also showed increased adhesion and invasion as compared to the other two O-Ag negative mutants Δtyv and Δprt. In vivo experiments also confirmed the increased virulent phenotype of ΔwbaV mutant as compared to Δprt mutant. CONCLUSION: OAg-negative mutants are known to be avirulent; however, this study demonstrates that certain OAg negative mutants e.g. ∆wbaV may also show resistance to antimicrobial peptides and cause colitis in Streptomyces pretreated mouse model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA