Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(11): 6053-6067, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32374866

RESUMEN

Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.


Asunto(s)
Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Fluorescencia , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/química , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Respuesta SOS en Genética
2.
Proc Natl Acad Sci U S A ; 111(28): 10179-84, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982198

RESUMEN

Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended ß-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Fitocromo B/química , Multimerización de Proteína , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Luz , Fitocromo B/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
3.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214928

RESUMEN

Single-stranded DNA gaps form within the E. coli chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live E. coli cells. The ssDNA was marked by a functional fluorescent protein fusion of the SSB protein that replaces the wild type SSB. During log-phase growth the SSB fusion produces a mixture of punctate foci and diffuse fluorescence spread throughout the cytosol. Many foci are clustered. Fluorescent markers of DNA polymerase III frequently co-localize with SSB foci, often localizing to the outer edge of the large SSB features. Novel SSB-enriched features form and resolve regularly during normal growth. UV irradiation induces a rapid increase in SSB foci intensity and produces large features composed of multiple partially overlapping foci. The results provide a critical baseline for further exploration of ssDNA generation during DNA metabolism. Alterations in the patterns seen in a mutant lacking RecB function tentatively suggest associations of particular SSB features with the repair of double strand breaks and post-replication gaps.

4.
Elife ; 82019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31552824

RESUMEN

The alarmone (p)ppGpp regulates diverse targets, yet its target specificity and evolution remain poorly understood. Here, we elucidate the mechanism by which basal (p)ppGpp inhibits the purine salvage enzyme HPRT by sharing a conserved motif with its substrate PRPP. Intriguingly, HPRT regulation by (p)ppGpp varies across organisms and correlates with HPRT oligomeric forms. (p)ppGpp-sensitive HPRT exists as a PRPP-bound dimer or an apo- and (p)ppGpp-bound tetramer, where a dimer-dimer interface triggers allosteric structural rearrangements to enhance (p)ppGpp inhibition. Loss of this oligomeric interface results in weakened (p)ppGpp regulation. Our results reveal an evolutionary principle whereby protein oligomerization allows evolutionary change to accumulate away from a conserved binding pocket to allosterically alter specificity of ligand interaction. This principle also explains how another (p)ppGpp target GMK is variably regulated across species. Since most ligands bind near protein interfaces, we propose that this principle extends to many other protein-ligand interactions.


Asunto(s)
Bacillus subtilis/enzimología , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hipoxantina Fosforribosiltransferasa/antagonistas & inhibidores , Regulación Alostérica , Cristalografía por Rayos X , Escherichia coli/enzimología , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/metabolismo , Conformación Proteica , Multimerización de Proteína
5.
J Mol Biol ; 431(2): 178-195, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30472092

RESUMEN

Bacteria encode homooligomeric single-stranded (ss) DNA-binding proteins (SSBs) that coat and protect ssDNA intermediates formed during genome maintenance reactions. The prototypical Escherichia coli SSB tetramer can bind ssDNA using multiple modes that differ by the number of bases bound per tetramer and the magnitude of the binding cooperativity. Our understanding of the mechanisms underlying cooperative ssDNA binding by SSBs has been hampered by the limited amount of structural information available for interfaces that link adjacent SSB proteins on ssDNA. Here we present a crystal structure of Bacillus subtilis SsbA bound to ssDNA. The structure resolves SsbA tetramers joined together by a ssDNA "bridge" and identifies an interface, termed the "bridge interface," that links adjacent SSB tetramers through an evolutionarily conserved surface near the ssDNA-binding site. E. coli SSB variants with altered bridge interface residues bind ssDNA with reduced cooperativity and with an altered distribution of DNA binding modes. These variants are also more readily displaced from ssDNA by RecA than wild-type SSB. In spite of these biochemical differences, each variant is able to complement deletion of the ssb gene in E. coli. Together our data suggest a model in which the bridge interface contributes to cooperative ssDNA binding and SSB function but that destabilization of the bridge interface is tolerated in cells.


Asunto(s)
ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Unión Proteica/genética , Bacillus subtilis/genética , Sitios de Unión/genética , ADN Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Variación Genética/genética , Eliminación de Secuencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA