RESUMEN
Many (inter)national standards exist to evaluate the resistance of mortar and concrete to carbonation. When a carbonation coefficient is used for performance comparison of mixtures or service life prediction, the applied boundary conditions during curing, preconditioning and carbonation play a crucial role, specifically when using latent hydraulic or pozzolanic supplementary cementitious materials (SCMs). An extensive interlaboratory test (ILT) with twenty two participating laboratories was set up in the framework of RILEM TC 281-CCC 'Carbonation of Concrete with SCMs'. The carbonation depths and coefficients determined by following several (inter)national standards for three cement types (CEM I, CEM II/B-V, CEM III/B) both on mortar and concrete scale were statistically compared. The outcomes of this study showed that the carbonation rate based on the carbonation depths after 91 days exposure, compared to 56 days or less exposure duration, best approximates the slope of the linear regression and those 91 days carbonation depths can therefore be considered as a good estimate of the potential resistance to carbonation. All standards evaluated in this study ranked the three cement types in the same order of carbonation resistance. Unfortunately, large variations within and between laboratories complicate to draw clear conclusions regarding the effect of sample pre-conditioning and carbonation exposure conditions on the carbonation performance of the specimens tested. Nevertheless, it was identified that fresh and hardened state properties alone cannot be used to infer carbonation resistance of the mortars or concretes tested. It was also found that sealed curing results in larger carbonation depths compared to water curing. However, when water curing was reduced from 28 to 3 or 7 days, higher carbonation depths compared to sealed curing were observed. This increase is more pronounced for CEM I compared to CEM III mixes. The variation between laboratories is larger than the potential effect of raising the CO2 concentration from 1 to 4%. Finally, concrete, for which the aggregate-to-cement factor was increased by 1.79 in comparison with mortar, had a carbonation coefficient 1.18 times the one of mortar. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-01927-7.
RESUMEN
The genus Populus, which includes poplars, cottonwoods and aspen trees, represents a huge natural source of fibers with exceptional physical properties. In this study, the oil absorption properties of poplar seed hair fibers obtained from Populus nigra italica when tested with high-density motor oil and diesel fuel are reported. Poplar seed hair fibers are hollow hydrophobic microtubes with an external diameter between 3 and 12 µm, an average length of 4±1 mm and average tube wall thickness of 400±100 nm. The solid skeleton of the hollow fibers consists of lignocellulosic material coated by a hydrophobic waxy coating. The exceptional chemical, physical and microstructural properties of poplar seed hair fibers enable super-absorbent behavior with high absorption capacity for heavy motor oil and diesel fuel. The absorption values of 182-211 g heavy oil/g fiber and 55-60 g heavy oil/g fiber for packing densities of 0.005 g/cm(3) and 0.02 g/cm(3), respectively, surpass all known natural absorbents. Thus, poplar seed hair fibers obtained from Populus nigra italica and other trees of the genus Populus are an extremely promising natural source for the production of oil super absorbents.
Asunto(s)
Aceites Combustibles , Populus/química , Semillas/química , Absorción , Contaminación por Petróleo , Populus/ultraestructura , Semillas/ultraestructura , Espectrofotometría Infrarroja , Difracción de Rayos XRESUMEN
The concentration of CO2 in the atmosphere is constantly increasing, leading to an increase in the average global temperature and, thus, affecting climate change. Hence, various initiatives have been proposed to mitigate this process, among which CO2 sequestration is a technically simple and efficient approach. The spontaneous carbonation of ashes with atmospheric CO2 is very slow, and this is why accelerated carbonation is encouraged. However, not all ashes are equally suitable for this process, so a methodology to evaluate their potential should be developed. Such a methodology involves a combination of techniques, from theoretical calculations to XRF, XRD, DTA-TG, and the calcimetric determination of the CaCO3 content. The present study followed the approach of exposing ashes to accelerated carbonation conditions (4% v/v CO2, 50-55% and 80-85% RH, 20 °C) in a closed carbonation chamber for different periods of time until the maximum CO2 uptake is reached. The amount of sequestered CO2 was quantified by thermogravimetry. The results show that the highest CO2 sequestration capacity (33.8%) and carbonation efficiency (67.9%) were obtained for wood biomass bottom ash. This method was applied to eight combustion ashes and could serve to evaluate other ashes or comparable carbon storage materials.
RESUMEN
This review provides an overview of methods to extract valuable resources from the ash fractions of sewage sludge, municipal solid waste, and wood biomass combustion. The resources addressed here include critical raw materials, such as phosphorus, base and precious metals, and rare earth elements for which it is increasingly important to tap into secondary sources in addition to the mining of primary raw materials. The extraction technologies prioritized in this review are based on recycled acids or excess renewable energy to achieve an optimum environmental profile for the extracted resources and provide benefits in the form of local industrial symbioses. The extraction methods cover all scarce and valuable chemical elements contained in the ashes above certain concentration limits. Another important part of this review is defining potential applications for the mineral residues remaining after extraction. Therefore, the aim of this review is to combine the knowledge of resource extraction technology from ashes with possible applications of mineral residues in construction and related sectors to fully close material cycle loops.
RESUMEN
Alkali-activated composites of lightweight aggregates (LWAs, with beneficial insulating properties) and alkali-activated foams (AAFs, higher added value products due to their production from waste materials at well below 100 °C) allow for the expectation of superior properties if a chemical bonding reaction or mechanical interlocking occurs during production. However, the interfaces between LWAs and an AAF have not been studied in detail so far. Chemical reactions are possible if the LWA contains an amorphous phase which can react with the alkaline activators of the AAF, increase the bonding, and thus, also their mechanical strengths. These, in turn, allow for an improvement of the thermal insulation properties as they enable a further density reduction by incorporating low density aggregates. This work features a first-detailed analyses of the interfaces between the LWAs' expanded polystyrene, perlite, expanded clay and expanded glass, and the alkali-activated foam matrices produced using industrial slags and fly ash. Some are additionally reinforced by fibers. The goal of these materials is to replace cement by alkali-activated waste as it significantly lowers the environmental impact of the produced building components.
RESUMEN
Alkali-activated foams (AAFs) are inorganic porous materials that can be obtained at temperatures well below 100°C with the use of inorganic wastes as aluminosilicate precursors. In this case, fly ash derived from a Slovenian power plant has been investigated. Despite the environmental benefits per se, due to saving of energy and virgin materials, when using waste materials, it is of extreme importance to also evaluate the potential leaching of heavy metal cations from the alkali-activated foams. This article presents an environmental study of a porous geopolymer derived from this particular fly ash, with respect to the leachability of potentially hazardous elements, its environmental toxicity as determined by biological testing, and the environmental impact of its production. In particular, attention was focused to investigate whether or not 1,000°C-fired alkali-activated fly ash and metakaolin-based foams, cured at 70°C, are environmentally friendlier options compared to unfired ones, and attempts to explain the rationale of the results were done. Eventually, the firing process at 1,000°C, apart from improving technical performance, could reinforce heavy metal cation entrapment within the aluminosilicate matrix. Since technical performance was also modified by addition of different types of activators (K-based or Na-based), as well as by partial replacement of fly ash with metakaolin, a life cycle assessment (LCA) analysis was performed to quantify the effect of these additions and processes (curing at 70°C and firing at 1,000°C) in terms of global warming potential. Selected samples were also evaluated in terms of leaching of potentially deleterious elements as well as for the immobilization effect of firing. The leaching test indicated that none of the alkali-activated material is classified as hazardous, not even the as-received fly ash as component of new AAF. All of the alkali-activated foams do meet the requirements for an inertness. The highest impact on bacterial colonies was found in samples that did not undergo firing procedures, i.e., those that were cured at 70°C, which induced the reduction of bacterial Enterococcus faecalis viability. The second family of bacteria tested, Escherichia coli, appeared more resistant to the alkaline environment (pH = 10-12) generated by the unfired AAMs. Cell viability recorded the lowest value for unfired alkali-activated materials produced from fly ash and K-based activators. Its reticulation is only partial, with the leachate solution appearing to be characterized with the most alkaline pH and with the highest ionic conductivity, i.e., highest number of soluble ions. By LCA, it has been shown that 1) changing K-based activators to Na-based activators increases environmental impact of the alkali-activated foams by 1%-4% in terms of most of the impact categories (taking into account the production stage). However, in terms of impact on abiotic depletion of elements and impact on ozone layer depletion, the increase is relatively more significant (11% and 18%, respectively); 2) replacing some parts of fly ash with metakaolin also results in relatively higher environmental footprint (increase of around 1%-4%, while the impact on abiotic depletion of elements increases by 14%); and finally, 3) firing at 1,000°C contributes significantly to the environmental footprint of alkali-activated foams. In such a case, the footprint increases by around one third, compared to the footprint of alkali-activated foams produced at 70°C. A combination of LCA and leaching/toxicity behavior analysis presents relevant combinations, which can provide information about long-term environmental impact of newly developed waste-based materials.
RESUMEN
Sedimentation is a naturally occurring process of allowing particles in water bodies to settle out of the suspension under a gravity effect. In this study, the sediments of the Drava River were fully investigated to determine the heavy metal concentrations along the river and their potential reuse in the construction sector. Naturally dehydrated sediments from the Drava River were tested as an additive for the production of fired bricks. The dredged sediments were used as a substitute for natural brick clay in amounts up to 50% by weight, and it was confirmed that up to 20% by weight of the added sediment could be used directly in the process without critically affecting performance. Finally, the naturally dehydrated sediments were also evaluated for their use as a filling material in the construction of levees. The natural moisture content of the dehydrated sediment was too high for it to be used without additives, so quicklime was added as an inorganic binder. The test results showed an improvement in the geotechnical properties of the material to such an extent that it is suitable as a filling material for levees.
RESUMEN
The production of alkali-activated materials (AAMs) is known for its environmentally friendly processing method, where several amorphous-rich aluminosilicate material sources combine with an alkali media solution to form solid, ceramic-like materials. In terms of the Si:Al, Na(K):Al, and Na(K):H2O ratios, the theory of AAM formation is quite well developed, but some open questions in the technology process remain, especially with regards to the means of curing, where the generation of defects can be persistent. Knowing that deformation is extremely high in the early ages, this study investigates the effects of temperature and moisture on shrinkage behavior within the first 72 h of AA pastes made from ladle (LS) and electric arc furnace (EAF) slag and activated by sodium silicate (Na2SiO3). The method to determine the deformation of alkali-activated slag-based materials, in terms of both autogenous and drying shrinkage, was based on the modified ASTM C1698-19 standard for the measurement of autogenous shrinkage in cement pastes. Autogenous deformation and strain were measured in four samples, using the standard procedure at room temperature, 40 and 60°C. Furthermore, using an adjusted method, nine samples were characterized for strain and partial surface pressure, while drying at room temperature, 40, or 60°C at a relative humidity of 30 or 90%. The results show that the highest rate of autogenous shrinkage occurred at a temperature of 60°C, followed by drying shrinkage at 60°C and 30% relative humidity, owing to the fact that the rate of evaporation was highest at this moisture content. The study aimed to provide guidance regarding selection of the optimal curing set in order to minimize deformations in slag-based alkali-activated materials. In the present case, curing at a temperature of around 40°C under lower moisture conditions for the first 24 h provided optimal mechanical properties for the slags investigated. The methodology might also be of use for other aluminosilicate sources such as metakaolin, fly ash, and mineral wool-based alkali-activated materials.
RESUMEN
This paper investigates the effectiveness of a specific crystalline waterproofing admixture (CWA) in concrete as a function of a water-binder ratio. Four concrete mixes with and without CWA were prepared; two of them with a water-binder ratio of 0.45 and two of them with a water-binder ratio of 0.55. Water permeability and compressive strength were tested on hardened concrete specimens and self-healing of cracks over time was observed. Cement paste and CWA paste were prepared to clarify the results obtained on the concrete specimens. SEM and EDS and XRD and FTIR were performed on the hardened pastes to explain the mechanism of CWA working. The results show that the addition of CWA had no significant effect on the compressive strength of the concrete, but reduced the water penetration depth in the concrete, and the reduction was more effective for mixes with lower water-binder ratio. Regarding the self-healing effect, it can be concluded that the addition of CWA improves the crack healing in concrete, but the efficiency of self-healing is highly dependent on the initial crack width. The mechanisms involved in the reduction of water penetration depth and crack healing in concrete can be explained by different mechanisms; one is creation of the CSH gel from unreacted clinker grains, then formation carbonate, and additional mechanism is gel formation (highly expansive Mg-rich hydro-carbonate) from magnesium based additives. The presence of sodium silicate, which would transform into carbonate/bicarbonate, also cannot be excluded.
RESUMEN
Alkali-activated materials (AAMs) represent a promising alternative to conventional building materials and ceramics. Being produced in large amounts as aluminosilicate-rich secondary products, such as slags, they can be utilized for the formulation of AAMs. Slags are partially crystalline metallurgical residues produced during the high temperature separation of metallic and non-metallic materials in the steelmaking processes. In the present study, the electric arc furnace carbon or stainless steel slag (EAF) and secondary metallurgical slag such as ladle furnace basic slag (LS) were used as precursors in an alkali-activation process. EAF slag, with its amorphous fraction of about 56%, presented higher contents of soluble Si and Al species with respect to ladle slag R (35%). However, both are suitable to produce AAM. The leaching behavior shows that all the release values are below the regulation limit. All the bivalent ions (Ba, Cd, Cu, Ni, Pb, and Zn) are well immobilized in a geopolymeric matrix, while amphoteric elements, such as As and Cr, show a slight increase of release with respect to the corresponding slag in alkaline and aqueous environments. In particular, for Sb and As of AAM, release still remains below the regulation limits, while Mo presents an increase of leaching values that slightly exceeds the limit for landfill non-dangerous waste.
RESUMEN
Influence of particle size on the mechanical strength of alkali activated material from waste refractory monolithic was investigated in this study. Precursor was chemically and mineralogically analysed, separated on 4 fractions and alkali activated with Na-water glass. Alkali activated materials were thoroughly investigated under SEM and XRD to evaluate the not predicted differences in mechanical strength. Influence of curing temperature and time dependence at curing temperatures on mechanical strength were investigated in the sample prepared from a fraction that caused the highest compressive strength.
RESUMEN
The construction and demolition sector is one of the biggest consumers of natural resources in the world and consequently, one of the biggest waste producers worldwide. The proper management of construction and demolition waste (CDW) can provide major benefits for the construction and recycling industry. However, the recycling rate of CDW is relatively low, as there is still a lack of confidence in the quality of recycled CDW materials. Therefore, new research projects are looking for innovative solutions within recycling of CDW in order to overcome uncertainties currently associated with the use of construction products made from recycled or re-used CDW. In this paper, a "cradle-to-cradle" life cycle assessment (LCA) study has been conducted to investigate the environmental performance of the prefabricated geopolymeric façade cladding panels made from large fractions of CDW. The LCA results indicate that the majority of the environmental burden arises within the manufacturing stage; however, the environmental burden can be reduced with simple optimisation of the manufacturing process. Furthermore, the environmental impact of the prefabricated geopolymeric façade cladding panels is generally lower than the environmental burden associated with the façade cladding panels made from virgin materials.
RESUMEN
This paper estimates the frost resistance of bricks using the ratio of compressive strength before freezing to compressive strength after freezing to describe the damage degree of bricks being exposed to freeze-thaw cycles. In an effort to find the ratio that clearly distinguishes resistant bricks from non-resistant bricks, the authors attempted to establish the correlation between the ratio and Maage factor as a recognized model for assessing brick resistance. To clarify the degree of damage of individual bricks, the pore size distribution has been investigated by means of mercury porosimetry. Additionally, micro computed X-ray tomography (micro-CT) has been employed to define the influence of the type of pores (open or closed) and their connectivity on the frost resistance of bricks. According to the results, it can be concluded that there is a good correlation between the Maage factor and the ratio of pre- to post-freeze-thaw cycle compressive strengths, and that the latter ratio strongly correlates with the percentage of large pores (≥3 mm) in the brick. If such a correlation could be confirmed in a larger sample, then the ratio of pre- to post-freeze-thaw cycle compressive strengths could be used as a new method for assessing brick resistance to freeze-thaw cycles and it would be possible to determine the minimum percentage of large pores required to ensure the overall resistance of brick to freeze-thaw conditions. The complexity of the problem is, however, evidenced by the fact that no clear connection between the type (open versus closed) or connectivity of pores and the frost resistance of bricks could be revealed by micro-CT.
RESUMEN
The aim of the paper is to research the influence of foaming and stabilization agents in the alkali activation process of waste green ceramics for future low cost up-cycling into lightweight porous thermal insulating material. Green waste ceramics, which is used in the present article, is a green body residue (non-successful intermediate-product) in the synthesis of technical ceramics for fuses. This residue was alkali activated with Na-water glass and NaOH in theoretically determined ratio based on data from X-ray fluorescence (XRF) and X-ray powder diffraction (XRD) that was set to maximise mechanical properties and to avoid efflorescence. Prepared mixtures were compared to alkali activated material prepared in theoretically less favourable ratios, and tested on the strength and density. Selected mixtures were further foamed with different foaming agents, that are Na-perborate (s), H2O2 (l), and Al (s), and supported by a stabilization agent, i.e., Na-dodecyl sulphate. The goal of the presented work was to prepare alkali activated foam based on green ceramics with density below 1 kg/l and compressive strength above 1 MPa.
RESUMEN
Alkali activation is studied as a potential technology to produce a group of high performance building materials from industrial residues such as metallurgical slag. Namely, slags containing aluminate and silicate form a useful solid material when activated by an alkaline solution. The alkali-activated (AA) slag-based materials are promising alternative products for civil engineering sector and industrial purposes. In the present study the locally available electric arc furnace steel slag (Slag A) and the ladle furnace basic slag (Slag R) from different metallurgical industries in Slovenia were selected for alkali activation because of promising amorphous Al/Si rich content. Different mixtures of selected precursors were prepared in the Slag A/Slag R ratios 1/0, 3/1, 1/1, 1/3 and 0/1 and further activated with potassium silicate using an activator to slag ratio of 1:2 in order to select the optimal composition with respect to their mechanical properties. Bending strength of investigated samples ranged between 4 and 18 MPa, whereas compressive strength varied between 30 and 60 MPa. The optimal mixture (Slag A/Slag R = 1/1) was further used to study strength development under the influence of different curing temperatures at room temperature (R. T.), and in a heat-chamber at 50, 70 and 90 °C, and the effects of curing time for 1, 3, 7 and 28 days was furthermore studied. The influence of curing time at room temperature on the mechanical strength at an early age was found to be nearly linear. Further, it was shown that specimens cured at 70 °C for 3 days attained almost identical (bending/compressive) strength to those cured at room temperature for 28 days. Additionally, microstructure evaluation of input materials and samples cured under different conditions was performed by means of XRD, FTIR, SEM and mercury intrusion porosimetry (MIP).
RESUMEN
This paper presents results regarding the phase composition, microstructure and textural properties of two types of aggregates, which were prepared via crushing or pelletization of alkali-activated Class F fly ash and cured under different conditions. The alkali activator was the same for aggregate products, containing an alkaline solution consisting of 8 M NaOH and Na-silicate (8 M NaOH/Na-silicate = 1:2.5 mass ratio). The aforementioned properties were influenced by two different preparation procedures combined with varying curing regimes (under normal conditions at 20 °C, RH 40â»60% for 28 and 120 days and under an accelerated regime, at 65 °C for 5 days). Aggregates were characterized using X-ray diffraction (XRD), Fourier-transform transmission infrared spectroscopy (FTIR), back scattered electron microscopy with energy dispersive spectrometer (BSE-EDS) analyses and mercury intrusion porosimetry (MIP). The results showed noteworthy structural and textural diversities between the two types of aggregate. The method of preparation and curing regime affected the formation of the N-A-S-H structure and the texture of the alkali-activated fly ash product, with the crushing method giving an advantage.
RESUMEN
This experimental study aimed to develop a fiber-reinforced lightweight mineral wool-based alkali activated mortar. The lightweight mineral wool-based alkali activated mortars were produced using premade foam and reinforced by polypropylene (PP) fibers. They were assessed in terms of fresh and hardened-state properties. Fresh-state properties were investigated by mini-slump tests. Hardened-state characteristics were assessed by ultrasonic pulse velocity, dry density, compressive and flexural strengths, drying shrinkage, efflorescence, water absorption, and permeable porosity. For the first time, the resistance of the synthesized lightweight mineral wool-based alkali activated mortars against harsh conditions (carbonation, freeze and thaw, and high temperature) were evaluated. The porous structures of the developed lightweight alkali activated mortars were also analyzed using an X-ray micro-computed tomography (CT) technique. Lightweight mix compositions with densities in a range of 770-1510 kg/m3, compressive strengths of 1-9 MPa, and flexural strengths of 2.6-8 MPa were developed. Increases in both density and strength after carbonation were also recorded, while a decrease of strength was noticed after exposure to freeze/thaw and high temperatures of up to 500 °C.
RESUMEN
In the process of protection and consolidation of valuable materials, the efficiency is the crucial property that needs to be considered. TiO2/ZnAl layered double hydroxide (LDH) coating and silicate- and carbonate-based consolidants were synthesized and proposed to be used for protection and consolidation of four porous mineral substrates: brick, stone, render and mortar. The photocatalytic efficiency of TiO2/ZnAl LDH coating, as well as consolidation efficiency of two consolidants, both applied on model substrates, were studied. The photocatalytic coating showed significant activity and performed well after the durability tests involving rinsing and freezing/thawing procedures. After treatment with both consolidants, a serious enhancement of consolidation of the used substrates was found. On the other hand, the application of TiO2/ZnAl LDH, as well as consolidants, caused negligible changes in the water vapour permeability values and in appearance of the porous mineral substrates, indicating a high level of compatibility.