Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(2): 204-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26726811

RESUMEN

Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years. Wide-ranging adverse clinical events can seriously confound vaccine adoption, but whether there are immunological correlates of these is unknown. Here we identify a molecular signature of adverse events that was commonly associated with an existing B cell phenotype. Thus immunophenotypic variation among healthy humans may be manifest in complex pathophysiological responses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Adyuvantes Inmunológicos , Adolescente , Adulto , Factores de Edad , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Análisis por Conglomerados , Citocinas/sangre , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fenotipo , Factores de Tiempo , Transcriptoma , Vacunación , Adulto Joven
3.
Mol Cell Proteomics ; 18(3): 534-545, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559323

RESUMEN

The importance of IgG glycosylation, Fc-gamma receptor (FcγR) single nucleotide polymorphisms and FcγR copy number variations in fine tuning the immune response has been well established. There is a growing appreciation of the importance of glycosylation of FcγRs in modulating the FcγR-IgG interaction based on the association between the glycosylation of recombinant FcγRs and the kinetics and affinity of the FcγR-IgG interaction. Although glycosylation of recombinant FcγRs has been recently characterized, limited knowledge exists on the glycosylation of endogenous human FcγRs. In order to improve the structural understanding of FcγRs expressed on human cells we characterized the site specific glycosylation of native human FcγRIII from neutrophils of 50 healthy donors and from matched plasma for 43 of these individuals. Through this analysis we have confirmed site specific glycosylation patterns previously reported for soluble FcγRIII from a single donor, identified FcγRIIIb specific Asn45 glycosylation and an allelic effect on glycosylation at Asn162 of FcγRIIIb. Identification of FcγRIIIb specific glycosylation allows for assignment of FcγRIIIb alleles and relative copy number of the two alleles where DNA/RNA is not available. Intriguingly the types of structures found to be elevated at Asn162 in the NA2 allele have been shown to destabilize the Fc:FcγRIII interaction resulting in a faster dissociation rate. These differences in glycosylation may in part explain the differential activity reported for the two alleles which have similar in vitro affinity for IgG.


Asunto(s)
Asparagina/química , Receptores de IgG/química , Receptores de IgG/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Dosificación de Gen , Genotipo , Glicosilación , Voluntarios Sanos , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Manosa/química , Espectrometría de Masas , Modelos Moleculares , Neutrófilos/inmunología , Plasma/inmunología , Receptores de IgG/genética
4.
Anal Bioanal Chem ; 406(13): 3079-89, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24664406

RESUMEN

The binding affinity and specificity of heparin to proteins is widely recognized to be sulfation-pattern dependent. However, for the majority of heparin-binding proteins (HBPs), it still remains unclear what moieties are involved in the specific binding interaction. Here, we report our study using saturation transfer difference (STD) nuclear magnetic resonance (NMR) to map out the interactions of synthetic heparin oligosaccharides with HBPs, such as basic fibroblast growth factor (FGF2) and fibroblast growth factor 10 (FGF10), to provide insight into the critical epitopes of heparin ligands involved. The irradiation frequency of STD NMR was carefully chosen to excite the methylene protons so that enhanced sensitivity was obtained for the heparin-protein complex. We believe this approach opens up additional application avenues to further investigate heparin-protein interactions.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Factor 10 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/química , Heparina/química , Humanos , Unión Proteica , Resonancia por Plasmón de Superficie
5.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38284934

RESUMEN

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the RNA-binding proteins G3BP1/2. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting the co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress and dissolve pre-existing stress granules. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent powerful tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.


Asunto(s)
ADN Helicasas , ARN Helicasas , Gránulos de Estrés , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética
6.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492217

RESUMEN

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Virulencia , ARN Guía de Sistemas CRISPR-Cas , Proteínas de la Nucleocápside , Replicación Viral , ARN Viral/genética
7.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425931

RESUMEN

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the paralogs G3BP1 and G3BP2. G3BP1/2 proteins bind mRNAs and thereby promote the condensation of mRNPs into stress granules. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, referred to as G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is known to be targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress, and dissolve pre-existing stress granules when added to cells after stress granule formation. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent ideal tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.

8.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425880

RESUMEN

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. G3BP1/2 are prominent interactors of the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the functional consequences of the G3BP1-N interaction in the context of viral infection remain unclear. Here we used structural and biochemical analyses to define the residues required for G3BP1-N interaction, followed by structure-guided mutagenesis of G3BP1 and N to selectively and reciprocally disrupt their interaction. We found that mutation of F17 within the N protein led to selective loss of interaction with G3BP1 and consequent failure of the N protein to disrupt stress granule assembly. Introduction of SARS-CoV-2 bearing an F17A mutation resulted in a significant decrease in viral replication and pathogenesis in vivo, indicating that the G3BP1-N interaction promotes infection by suppressing the ability of G3BP1 to form stress granules.

9.
Glycobiology ; 21(9): 1194-205, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21515908

RESUMEN

A series of size-defined low-molecular-weight heparins were generated by regioselective chemical modifications and profiled for their in vitro and in vivo activities. The compounds displayed reduced anti-coagulant activity, demonstrated varying affinities toward angiogenic growth factors (fibroblast growth factor-2, vascular endothelial growth factor and stromal cell-derived factor-1α), inhibited the P-selectin/P-selectin glycoprotein ligand-1 interaction and, notably, exhibited anti-tumor efficacy in a murine melanoma experimental metastasis model. Our results demonstrate that modulating specific sequences, especially the N-domains (-NS or -NH(2) or -NHCOCH(3)) in these polysaccharide sequences, has a major impact on the participation in a diverse range of biological activities. These results also suggest that the 6-O-sulfates, but not the 2-O-sulfates, critically affect the binding of a desulfated derivative to certain angiogenic proteins as well as its ability to inhibit P-selectin-mediated B16F10 melanoma metastases. Furthermore, N-desulfation followed by N-acetylation regenerates the affinity/inhibition properties to different extents in all the compounds tested in the in vitro assays. This systematic study lays a conceptual foundation for detailed structure function elucidation and will facilitate the rational design of targeted heparan sulfate proteoglycan-based anti-metastatic therapeutic candidates.


Asunto(s)
Heparina de Bajo-Peso-Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas , Animales , Sitios de Unión , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/metabolismo , Diseño de Fármacos , Femenino , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina de Bajo-Peso-Molecular/química , Heparina de Bajo-Peso-Molecular/metabolismo , Heparina de Bajo-Peso-Molecular/farmacología , Ensayos Analíticos de Alto Rendimiento , Hidrólisis , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/prevención & control , Selectina-P/antagonistas & inhibidores , Selectina-P/metabolismo , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Sulfatos/metabolismo , Resonancia por Plasmón de Superficie , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Nat Chem Biol ; 5(3): 154-6, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19151731

RESUMEN

Small-molecule inhibition of extracellular proteins that activate membrane receptors has proven to be extremely challenging. Diversity-oriented synthesis and small-molecule microarrays enabled the discovery of robotnikinin, a small molecule that binds the extracellular Sonic hedgehog (Shh) protein and blocks Shh signaling in cell lines, human primary keratinocytes and a synthetic model of human skin. Shh pathway activity is rescued by small-molecule agonists of Smoothened, which functions immediately downstream of the Shh receptor Patched.


Asunto(s)
Proteínas Hedgehog/metabolismo , Lactamas/farmacología , Lactonas/farmacología , Transducción de Señal/efectos de los fármacos , Células 3T3 , Animales , Descubrimiento de Drogas , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Lactamas/metabolismo , Lactonas/metabolismo , Ratones , Receptores Patched , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
11.
Bioconjug Chem ; 21(1): 14-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20028085

RESUMEN

Nanoparticles bearing surface-conjugated targeting ligands are increasingly being explored for a variety of biomedical applications. The multivalent conjugation of targeting ligands on the surface of nanoparticles is presumed to enhance binding to the desired target. However, given the complexities inherent in the interactions of nanoparticle surfaces with proteins, and the structural diversity of nanoparticle scaffolds and targeting ligands, our understanding of how conjugation of targeting ligands affects nanoparticle binding remains incomplete. Here, we use surface plasmon resonance (SPR) to directly and quantitatively study the affinity and binding kinetics of nanoparticles that display small molecules conjugated to their surface. We studied the interaction between a single protein target and a structurally related series of targeting ligands whose intrinsic affinity varies over a 4500-fold range and performed SPR at protein densities that reflect endogenous receptor densities. We report that even weak small molecule targeting ligands can significantly enhance target-specific avidity (by up to 4 orders of magnitude) through multivalent interactions and also observe a much broader range of kinetic effects than has been previously reported. Quantitative measurement of how the affinity and kinetics of nanoparticle binding vary as a function of different surface conjugations is a rapid, generalizable approach to nanoparticle characterization that can inform the design of nanoparticles for biomedical applications.


Asunto(s)
Técnicas de Sonda Molecular , Nanopartículas/análisis , Nanopartículas/química , Proteínas/metabolismo , Cinética , Ligandos , Unión Proteica , Proteínas/química , Receptores de Superficie Celular/metabolismo , Resonancia por Plasmón de Superficie
12.
J Neurochem ; 110(2): 557-69, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19457112

RESUMEN

Phosphorylation of neurotransmitter receptors can modify their activity and regulate neuronal excitability. Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase involved not only in neuronal development, but also in synaptic function and plasticity. Here we demonstrate that group I metabotropic glutamate receptors (mGluRs), which modulate post-synaptic signaling by coupling to intracellular signal transduction pathways, are phosphorylated by cdk5. In vitro kinase assays reveal that cdk5 phosphorylates mGluR5 within the domain of the receptor that interacts with the scaffolding protein homer. Using a novel phosphospecific mGluR antibody, we show that the homer-binding domain of both mGluR1 and mGluR5 are phosphorylated in vivo, and that inhibition of cdk5 with siRNA decreases the amount of phosphorylated receptor. Furthermore, kinetic binding analysis, by surface plasmon resonance, indicates that phosphorylation of mGluR5 enhances its association with homer. Homer protein complexes in the post-synaptic density, and their disruption by an activity-dependent short homer 1a isoform, have been shown to regulate the trafficking and signaling of the mGluRs and impact many neuroadaptive processes. Phosphorylation of the mGluR homer-binding domain, in contrast to homer 1a induction, provides a novel mechanism for potentially regulating a subset of homer interactions.


Asunto(s)
Proteínas Portadoras/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Proteínas Portadoras/química , Células Cultivadas , Chlorocebus aethiops , Quinasa 5 Dependiente de la Ciclina/química , Proteínas de Andamiaje Homer , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fosforilación/fisiología , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de Glutamato Metabotrópico/química
13.
Anal Biochem ; 386(2): 194-216, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19133223

RESUMEN

To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas/análisis , Anticuerpos Catalíticos/análisis , Benchmarking , Sitios de Unión , Técnicas Biosensibles/estadística & datos numéricos , Glutatión Transferasa/análisis , Cinética , Ligandos
14.
Clin Pharmacol Ther ; 105(4): 1031-1039, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30402880

RESUMEN

M281 is a fully human, anti-neonatal Fc receptor (FcRn) antibody that inhibits FcRn-mediated immunoglobulin G (IgG) recycling to decrease pathogenic IgG while preserving IgG production. A randomized, double-blind, placebo-controlled, first-in-human study with 50 normal healthy volunteers was designed to probe safety and the physiological maximum for reduction of IgG. Intravenous infusion of single ascending doses up to 60 mg/kg induced dose-dependent serum IgG reductions, which were similar across all IgG subclasses. Multiple weekly doses of 15 or 30 mg/kg achieved mean IgG reductions of ≈85% from baseline and maintained IgG reductions ≥75% from baseline for up to 24 days. M281 was well tolerated, with no serious or severe adverse events (AEs), few moderate AEs, and a low incidence of infection-related AEs similar to placebo treatment. The tolerability and consistency of M281 pharmacokinetics and pharmacodynamics support further evaluation of M281 in diseases mediated by pathogenic IgG.


Asunto(s)
Anticuerpos/metabolismo , Anticuerpos/uso terapéutico , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/metabolismo , Receptores Fc/metabolismo , Adulto , Anticuerpos/efectos adversos , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Infusiones Intravenosas/métodos , Masculino , Adulto Joven
15.
Arthritis Res Ther ; 21(1): 216, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31647025

RESUMEN

BACKGROUND: The goal of this study is to use comprehensive molecular profiling to characterize clinical response to anti-TNF therapy in a real-world setting and identify reproducible markers differentiating good responders and non-responders in rheumatoid arthritis (RA). METHODS: Whole-blood mRNA, plasma proteins, and glycopeptides were measured in two cohorts of biologic-naïve RA patients (n = 40 and n = 36) from the Corrona CERTAIN (Comparative Effectiveness Registry to study Therapies for Arthritis and Inflammatory coNditions) registry at baseline and after 3 months of anti-TNF treatment. Response to treatment was categorized by EULAR criteria. A cell type-specific data analysis was conducted to evaluate the involvement of the most common immune cell sub-populations. Findings concordant between the two cohorts were further assessed for reproducibility using selected NCBI-GEO datasets and clinical laboratory measurements available in the CERTAIN database. RESULTS: A treatment-related signature suggesting a reduction in neutrophils, independent of the status of response, was indicated by a high level of correlation (ρ = 0.62; p < 0.01) between the two cohorts. A baseline, response signature of increased innate cell types in responders compared to increased adaptive cell types in non-responders was identified in both cohorts. This result was further assessed by applying the cell type-specific analysis to five other publicly available RA datasets. Evaluation of the neutrophil-to-lymphocyte ratio at baseline in the remaining patients (n = 1962) from the CERTAIN database confirmed the observation (odds ratio of good/moderate response = 1.20 [95% CI = 1.03-1.41, p = 0.02]). CONCLUSION: Differences in innate/adaptive immune cell type composition at baseline may be a major contributor to response to anti-TNF treatment within the first 3 months of therapy.


Asunto(s)
Inmunidad Adaptativa/fisiología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Perfilación de la Expresión Génica/métodos , Inmunidad Innata/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Inmunidad Adaptativa/efectos de los fármacos , Adulto , Anciano , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/inmunología , Estudios de Cohortes , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/inmunología
16.
Circ Genom Precis Med ; 12(4): e002433, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30844302

RESUMEN

BACKGROUND: The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients. METHODS: Molecular profiling was conducted using mass spectrometry-based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points. Shotgun proteomics was performed on 9 KD adults with giant CAA and matched healthy controls. Plasma calprotectin was measured by ELISA in 28 pediatric KD patients 1 year post-KD, 70 adult KD patients, and 86 healthy adult volunteers. RESULTS: A characteristic molecular profile was seen in pediatric patients during the acute disease, which resolved at the subacute and convalescent periods in patients with no coronary artery sequelae but persisted in 2 patients who developed giant CAA. We, therefore, investigated persistence of inflammation in KD adults with giant CAA by shotgun proteomics that revealed a signature of active inflammation, immune regulation, and cell trafficking. Correlating results obtained using shotgun proteomics in the pediatric and adult KD cohorts identified elevated calprotectin levels in the plasma of patients with CAA. Investigation of expanded pediatric and adult KD cohorts revealed elevated levels of calprotectin in pediatric patients with giant CAA 1 year post-KD and in adult KD patients who developed giant CAA in childhood. CONCLUSIONS: Complex patterns of biomarkers of inflammation and cell trafficking can persist long after the acute phase of KD in patients with giant CAA. Elevated levels of plasma calprotectin months to decades after acute KD and infiltration of cells expressing S100A8 and A9 in vascular tissues suggest ongoing, subclinical inflammation. Calprotectin may serve as a biomarker to inform the management of KD patients following the acute illness.


Asunto(s)
Biomarcadores/sangre , Aneurisma Coronario/diagnóstico , Complejo de Antígeno L1 de Leucocito/sangre , Síndrome Mucocutáneo Linfonodular/patología , Enfermedad Aguda , Adulto , Proteína C-Reactiva/análisis , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Estudios de Casos y Controles , Niño , Vasos Coronarios/metabolismo , Humanos , Inflamación/etiología , Miocardio/metabolismo , Fenotipo , Proteómica
17.
Curr Opin Chem Biol ; 11(1): 74-82, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17169601

RESUMEN

Uncovering the functions of thousands of gene products, in various states of post-translational modification, is a key challenge in the post-genome era. To identify small-molecule probes for each protein function, high-throughput methods for ligand discovery are needed. In recent years, small-molecule microarrays (SMMs) have emerged as high-throughput and miniaturized screening tools for discovering protein-small-molecule interactions. Microarrays of small molecules from a variety of sources, including FDA-approved drugs, natural products and products of combinatorial chemistry and diversity-oriented synthesis, have been prepared and screened by several laboratories, leading to several newly discovered protein-ligand pairs.


Asunto(s)
Productos Biológicos/química , Química Farmacéutica/métodos , Técnicas Químicas Combinatorias/métodos , Análisis por Micromatrices/métodos , Péptidos/química , Productos Biológicos/genética , Química Farmacéutica/tendencias , Técnicas Químicas Combinatorias/tendencias , Ligandos , Análisis por Micromatrices/tendencias , Sondas Moleculares , Péptidos/genética , Procesamiento Proteico-Postraduccional , Sensibilidad y Especificidad
18.
Chem Biol ; 13(5): 493-504, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16720270

RESUMEN

Herein we report the expanded functional group compatibility of small-molecule microarrays to include immobilization of primary alcohols, secondary alcohols, phenols, carboxylic acids, hydroxamic acids, thiols, and amines on a single slide surface. Small-molecule "diversity microarrays" containing nearly 10,000 known bioactive small molecules, natural products, and small molecules originating from several diversity-oriented syntheses were produced by using an isocyanate-mediated covalent capture strategy. Selected printed bioactive compounds were detected with antibodies against compounds of interest. The new surface of the diversity microarrays is highly compatible with approaches involving cellular lysates. This feature has enabled a robust, optimized screening methodology using cellular lysates, allowing the detection of specific interactions with a broad range of binding affinity by using epitope-tagged or chimeric fluorescent proteins without prior purification. We believe that this expanded research capability has considerable promise in biology and medicine.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos , Línea Celular , Fluorescencia , Humanos , Proteína 1A de Unión a Tacrolimus/química
19.
CNS Neurol Disord Drug Targets ; 16(6): 714-723, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28240190

RESUMEN

BACKGROUND: In April 2015, the US Food and Drug Administration approved the first generic glatiramer acetate, Glatopa® (M356), as fully substitutable for Copaxone® 20 mg/mL for relapsing forms of multiple sclerosis (MS). This approval was accomplished through an Abbreviated New Drug Application that demonstrated equivalence to Copaxone. METHOD: This article will provide an overview of the methods used to establish the biological and immunological equivalence of the two glatiramer acetate products, including methods evaluating antigenpresenting cell (APC) biology, T-cell biology, and other immunomodulatory effects. RESULTS: In vitro and in vivo experiments from multiple redundant orthogonal assays within four biological processes (aggregate biology, APC biology, T-cell biology, and B-cell biology) modulated by glatiramer acetate in MS established the biological and immunological equivalence of Glatopa and Copaxone and are described. The following were observed when comparing Glatopa and Copaxone in these experiments: equivalent delays in symptom onset and reductions in "disease" intensity in experimental autoimmune encephalomyelitis; equivalent dose-dependent increases in Glatopa- and Copaxone- induced monokine-induced interferon-gamma release from THP-1 cells; a shift to a T helper 2 phenotype resulting in the secretion of interleukin (IL)-4 and downregulation of IL-17 release; no differences in immunogenicity and the presence of equivalent "immunofingerprints" between both versions of glatiramer acetate; and no stimulation of histamine release with either glatiramer acetate in basophilic leukemia 2H3 cell lines. CONCLUSION: In summary, this comprehensive approach across different biological and immunological pathways modulated by glatiramer acetate consistently supported the biological and immunological equivalence of Glatopa and Copaxone.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Acetato de Glatiramer/uso terapéutico , Inmunosupresores/uso terapéutico , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Linfocitos B/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Histamina/metabolismo , Ratones , Proteína Proteolipídica de la Mielina/toxicidad , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos/toxicidad , Linfocitos T/efectos de los fármacos , Equivalencia Terapéutica
20.
PLoS One ; 10(10): e0140299, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26473741

RESUMEN

Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate--responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate. A closely related but nonequivalent glatiramoid molecule was used as a control to establish assay sensitivity. Multiple probe-level (Student's t-test) and sample-level (principal component analysis, multidimensional scaling, and hierarchical clustering) statistical analyses were utilized to look for differences in gene expression induced by the test articles. The analyses were conducted across all genes measured, as well as across a subset of genes that were shown to be modulated by Copaxone. The following observations were made across multiple statistical analyses: the expression of numerous genes was significantly changed by treatment with Copaxone when compared against media-only control; gene expression profiles induced by Copaxone and Glatopa were not significantly different; and gene expression profiles induced by Copaxone and the nonequivalent glatiramoid were significantly different, underscoring the sensitivity of the test system and the multiple analysis methods. Comparative analysis was also performed on sets of transcripts relevant to T-cell biology and antigen presentation, among others that are known to be modulated by glatiramer acetate. No statistically significant differences were observed between Copaxone and Glatopa in the expression levels (magnitude and direction) of these glatiramer acetate-regulated genes. In conclusion, multiple methods consistently supported equivalent gene expression profiles between Copaxone and Glatopa.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Acetato de Glatiramer/farmacología , Células Th2/inmunología , Animales , Femenino , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos BALB C , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA