Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2310522120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983497

RESUMEN

With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Inhibidores Enzimáticos
2.
Angew Chem Int Ed Engl ; 63(31): e202404243, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747847

RESUMEN

6-Thioguanine (6TG) is a clinically used antitumor agent that was rationally designed as a DNA-targeting antimetabolite, but it also occurs naturally. 6TG is a critical virulence factor produced by Erwinia amylovorans, a notorious plant pathogen that causes fire blight of pome fruit trees. The biosynthesis of the rare thioamide metabolite involves an adenylating enzyme (YcfA) and a sulfur-mobilizing enzyme (YcfC), but the mechanism of sulfur transfer and putative intermediates have remained elusive. Through dissection and in vitro reconstitution of the thionation process using diverse substrates, we uncover an intermediate, prodrug-like thio-conjugate and elucidate the precise enzyme functions. YcfA not only adenylates GMP but also transfers the mercapto group of l-cysteine to the activated carbonyl. A designated C-S lyase (YcfC) then cleaves the resulting S-adduct to yield the thioamide. This pathway is distinct from canonical tRNA sulfur modifications and known enzymatic peptide thionations. By exploring a wide range of substrate surrogates, we exploited the tolerance of the enzyme pair to produce even a seleno analog. This study provides valuable insight into a previously unexplored area of bacterial thioamide formation and lays the groundwork for synthetic biology approaches to produce thioamide antimetabolites.


Asunto(s)
Profármacos , Tioamidas , Profármacos/química , Profármacos/metabolismo , Tioamidas/química , Tioamidas/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(16): 8850-8858, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32265283

RESUMEN

Closthioamide (CTA) is a rare example of a thioamide-containing nonribosomal peptide and is one of only a handful of secondary metabolites described from obligately anaerobic bacteria. Although the biosynthetic gene cluster responsible for CTA production and the thioamide synthetase that catalyzes sulfur incorporation were recently discovered, the logic for peptide backbone assembly has remained a mystery. Here, through the use of in vitro biochemical assays, we demonstrate that the amide backbone of CTA is assembled in an unusual thiotemplated pathway involving the cooperation of a transacylating member of the papain-like cysteine protease family and an iteratively acting ATP-grasp protein. Using the ATP-grasp protein as a bioinformatic handle, we identified hundreds of such thiotemplated yet nonribosomal peptide synthetase (NRPS)-independent biosynthetic gene clusters across diverse bacterial phyla. The data presented herein not only clarify the pathway for the biosynthesis of CTA, but also provide a foundation for the discovery of additional secondary metabolites produced by noncanonical biosynthetic pathways.


Asunto(s)
Antibacterianos/metabolismo , Bacterias Anaerobias/enzimología , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Tioamidas/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias Anaerobias/genética , Proteínas Bacterianas/genética , Sitios de Unión , Vías Biosintéticas/genética , Biología Computacional , Cisteína Endopeptidasas/genética , Genes Bacterianos , Familia de Multigenes , Metabolismo Secundario/genética
4.
Nat Prod Rep ; 39(3): 453-459, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586117

RESUMEN

The first machineries for non-ribosomal peptide (NRP) biosynthesis were uncovered over 50 years ago, and the dissection of these megasynthetases set the stage for the nomenclature system that has been used ever since. Although the number of exceptions to the canonical biosynthetic pathways has surged in the intervening years, the NRP synthetase (NRPS) classification system has remained relatively unchanged. This has led to the exclusion of many biosynthetic pathways whose biosynthetic machineries violate the classical rules for NRP assembly, and ultimately to a rupture in the field of NRP biosynthesis. In an attempt to unify the classification of NRP pathways and to facilitate the communication within the research field, we propose a revised framework for grouping ribosome-independent peptide biosynthetic pathways based on recognizable commonalities in their biosynthetic logic. Importantly, the framework can be further refined as needed.


Asunto(s)
Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas , Vías Biosintéticas , Péptido Sintasas/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo
5.
Angew Chem Int Ed Engl ; 61(32): e202205409, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35656913

RESUMEN

Benzoxazole scaffolds feature prominently in diverse synthetic and natural product-derived pharmaceuticals. Our understanding of their bacterial biosynthesis is, however, limited to ortho-substituted heterocycles from actinomycetes. We report an overlooked biosynthetic pathway in anaerobic bacteria (typified in Clostridium cavendishii) that expands the benzoxazole chemical space to meta-substituted heterocycles and heralds a distribution beyond Actinobacteria. The first benzoxazoles from the anaerobic realm (closoxazole A and B) were elucidated by NMR and chemical synthesis. By genome editing in the native producer, heterologous expression in Escherichia coli, and systematic pathway dissection we show that closoxazole biosynthesis invokes an unprecedented precursor usage (3-amino-4-hydroxybenzoate) and manner of assembly. Synthetic utility was demonstrated by the precursor-directed biosynthesis of a tafamidis analogue. A bioinformatic survey reveals the pervasiveness of related gene clusters in diverse bacterial phyla.


Asunto(s)
Actinobacteria , Bacterias Anaerobias , Actinobacteria/metabolismo , Bacterias/metabolismo , Bacterias Anaerobias/genética , Benzoxazoles/química , Vías Biosintéticas/genética , Escherichia coli/metabolismo , Familia de Multigenes
6.
Angew Chem Int Ed Engl ; 61(37): e202206168, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35852818

RESUMEN

Understanding antibiotic resistance mechanisms is central to the development of anti-infective therapies and genomics-based drug discovery. Yet, many knowledge gaps remain regarding the resistance strategies employed against novel types of antibiotics from less-explored producers such as anaerobic bacteria, among them the Clostridia. Through the use of genome editing and functional assays, we found that CtaZ confers self-resistance against the copper chelator and gyrase inhibitor closthioamide (CTA) in Ruminiclostridium cellulolyticum. Bioinformatics, biochemical analyses, and X-ray crystallography revealed CtaZ as a founding member of a new group of GyrI-like proteins. CtaZ is unique in binding a polythioamide scaffold in a ligand-optimized hydrophobic pocket, thereby confining CTA. By genome mining using CtaZ as a handle, we discovered previously overlooked homologs encoded by diverse members of the phylum Firmicutes, including many pathogens. In addition to characterizing both a new role for a GyrI-like domain in self-resistance and unprecedented thioamide binding, this work aids in uncovering related drug-resistance mechanisms.


Asunto(s)
Bacterias Anaerobias , Proteínas Portadoras , Antibacterianos/química , Bacterias Anaerobias/genética , Proteínas Portadoras/genética , Farmacorresistencia Microbiana , Edición Génica
7.
Angew Chem Int Ed Engl ; 60(8): 4104-4109, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33119936

RESUMEN

Closthioamide (CTA) is a symmetric nonribosomal peptide (NRP) comprised of two diaminopropane-linked polythioamidated monomers. CTA is biosynthesized by Ruminiclostridium cellulolyticum via an atypical NRP synthetase (NRPS)-independent biosynthetic pathway. Although the logic for monomer assembly was recently elucidated, the strategy for the biosynthesis and incorporation of the diamine linker remained a mystery. By means of genome editing, synthesis, and in vitro biochemical assays, we demonstrate that the final steps in CTA maturation proceed through a surprising split-merge pathway involving the dual use of a thiotemplated intermediate. This pathway includes the first examples of an aldo-keto reductase catalyzing the reductive release of a thiotemplated product, and of a transthioamidating transglutaminase. In addition to clarifying the remaining steps in CTA assembly, our data shed light on largely unexplored pathways for NRPS-independent peptide biosynthesis.


Asunto(s)
Antibacterianos/biosíntesis , Tioamidas/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Antibacterianos/análisis , Antibacterianos/química , Biocatálisis , Cromatografía Líquida de Alta Presión , Clostridiales/genética , Clostridiales/metabolismo , Edición Génica , Familia de Multigenes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tioamidas/análisis , Tioamidas/química , Transaminasas/genética , Transaminasas/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
8.
Angew Chem Int Ed Engl ; 60(19): 10670-10679, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33625794

RESUMEN

Clostridia coordinate many important processes such as toxin production, infection, and survival by density-dependent communication (quorum sensing) using autoinducing peptides (AIPs). Although clostridial AIPs have been proposed to be (thio)lactone-containing peptides, their true structures remain elusive. Here, we report the genome-guided discovery of an AIP that controls endospore formation in Ruminiclostridium cellulolyticum. Through a combination of chemical synthesis and chemical complementation assays with a mutant strain, we reveal that the genuine chemical mediator is a homodetic cyclopeptide (cAIP). Kinetic analyses indicate that the mature cAIP is produced via a cryptic thiolactone intermediate that undergoes a rapid S→N acyl shift, in a manner similar to intramolecular native chemical ligation (NCL). Finally, by implementing a chemical probe in a targeted screen, we show that this novel enzyme-primed, intramolecular NCL is a widespread feature of clostridial AIP biosynthesis.


Asunto(s)
Clostridium/química , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/biosíntesis , Cinética , Péptido Hidrolasas/química , Péptidos Cíclicos/química
9.
Chem Rev ; 117(8): 5521-5577, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28418240

RESUMEN

Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.


Asunto(s)
Productos Biológicos/metabolismo , Carbono/metabolismo , Azufre/metabolismo , Adenosina Trifosfato/metabolismo , Hidrolasas/metabolismo , Oxigenasas/metabolismo , Transferasas/metabolismo
10.
Angew Chem Int Ed Engl ; 58(37): 13014-13018, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31276268

RESUMEN

Thioamide-containing nonribosomal peptides (NRPs) are exceedingly rare. Recently the biosynthetic gene cluster for the thioamidated NRP antibiotic closthioamide (CTA) was reported, however, the enzyme responsible for and the timing of thioamide formation remained enigmatic. Here, genome editing, biochemical assays, and mutational studies are used to demonstrate that an Fe-S cluster containing member of the adenine nucleotide α-hydrolase protein superfamily (CtaC) is responsible for sulfur incorporation during CTA biosynthesis. However, unlike all previously characterized members, CtaC functions in a thiotemplated manner. In addition to prompting a revision of the CTA biosynthetic pathway, the reconstitution of CtaC provides the first example of a NRP thioamide synthetase. Finally, CtaC is used as a bioinformatic handle to demonstrate that thioamidated NRP biosynthetic gene clusters are more widespread than previously appreciated.


Asunto(s)
Antibacterianos/metabolismo , Vías Biosintéticas , Clostridiales/metabolismo , Péptidos/metabolismo , Tioamidas/metabolismo , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridiales/química , Clostridiales/genética , Genes Bacterianos , Familia de Multigenes , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptidos/química , Péptidos/genética , Tioamidas/química
11.
Angew Chem Int Ed Engl ; 57(36): 11574-11578, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29947149

RESUMEN

6-Thioguanine (6TG) is a DNA-targeting therapeutic used in the treatment of various cancers. While 6TG was rationally designed as a proof of concept for antimetabolite therapy, it is also a rare thioamide-bearing bacterial natural product and critical virulence factor of Erwinia amylovorans, plant pathogens that cause fire blight. Through gene expression, biochemical assays, and mutational analyses, we identified a specialized bipartite enzyme system, consisting of an ATP-dependent sulfur transferase (YcfA) and a sulfur-mobilizing enzyme (YcfC), that is responsible for the peculiar oxygen-by-sulfur substitution found in the biosynthesis of 6TG. Mechanistic and phylogenetic studies revealed that YcfA-mediated 6TG biosynthesis evolved from ancient tRNA modifications that support translational fidelity. The successful in vitro reconstitution of 6TG thioamidation showed that YcfA employs a specialized sulfur shuttle that markedly differs from universal RNA-related systems. This study sheds light on underexplored enzymatic C-S bond formation in natural product biosynthesis.


Asunto(s)
Antimetabolitos/metabolismo , Proteínas Bacterianas/metabolismo , Erwinia amylovora/enzimología , Tioamidas/metabolismo , Tioguanina/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Oxígeno/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Transducción de Señal , Azufre/metabolismo
12.
Angew Chem Int Ed Engl ; 57(43): 14080-14084, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30193003

RESUMEN

Closthioamide (CTA) is a unique symmetric nonribosomal peptide with six thioamide moieties that is produced by the Gram-positive obligate anaerobe Ruminiclostridium cellulolyticum. CTA displays potent inhibitory activity against important clinical pathogens, making it a promising drug candidate. Yet, the biosynthesis of this DNA gyrase-targeting antibiotic has remained enigmatic. Using a combination of genome mining, genome editing (targeted group II intron, CRISPR/Cas9), and heterologous expression, we show that CTA biosynthesis involves specialized enzymes for starter unit biosynthesis, amide bond formation, thionation, and dimerization. Surprisingly, CTA biosynthesis involves a novel thiotemplated peptide assembly line that markedly differs from known nonribosomal peptide synthetases. These findings provide the first insights into the biosynthesis of thioamide-containing nonribosomal peptides and offer a starting point for the discovery of related natural products.


Asunto(s)
Antibacterianos/química , Bacterias Anaerobias/química , Clostridiales/química , Edición Génica , Tioamidas/química , Antibacterianos/farmacología , Bacterias Anaerobias/genética , Sistemas CRISPR-Cas , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía Líquida de Alta Presión , Clostridiales/genética , Girasa de ADN/efectos de los fármacos , Genes Bacterianos , Intrones , Espectrometría de Masas , Familia de Multigenes , Péptido Sintasas/química , Espectroscopía de Protones por Resonancia Magnética , Tioamidas/farmacología
13.
Nat Chem Biol ; 11(8): 564-70, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26167873

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products. RiPP precursor peptides can undergo extensive enzymatic tailoring to yield structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP-modifying enzymes contain structurally similar precursor peptide-binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes, and we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies we verified RRE's roles for three distinct RiPP classes: linear azole-containing peptides, thiopeptides and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, thereby laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Productos Biológicos/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriocinas/química , Bacteriocinas/genética , Productos Biológicos/química , Expresión Génica , Cadenas de Markov , Modelos Moleculares , Péptidos/química , Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
14.
Nat Chem Biol ; 10(10): 823-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25129028

RESUMEN

Despite intensive research, the cyclodehydratase responsible for azoline biogenesis in thiazole/oxazole-modified microcin (TOMM) natural products remains enigmatic. The collaboration of two proteins, C and D, is required for cyclodehydration. The C protein is homologous to E1 ubiquitin-activating enzymes, whereas the D protein is within the YcaO superfamily. Recent studies have demonstrated that TOMM YcaOs phosphorylate amide carbonyl oxygens to facilitate azoline formation. Here we report the X-ray crystal structure of an uncharacterized YcaO from Escherichia coli (Ec-YcaO). Ec-YcaO harbors an unprecedented fold and ATP-binding motif. This motif is conserved among TOMM YcaOs and is required for cyclodehydration. Furthermore, we demonstrate that the C protein regulates substrate binding and catalysis and that the proline-rich C terminus of the D protein is involved in C protein recognition and catalysis. This study identifies the YcaO active site and paves the way for the characterization of the numerous YcaO domains not associated with TOMM biosynthesis.


Asunto(s)
Adenosina Trifosfato/química , Bacteriocinas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Hidroliasas/química , Fosfotransferasas/química , Enzimas Activadoras de Ubiquitina/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Bacteriocinas/genética , Bacteriocinas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxazoles/química , Oxazoles/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tiazoles/química , Tiazoles/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
15.
J Am Chem Soc ; 137(24): 7672-7, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26024319

RESUMEN

Thiazole/oxazole-modified microcins (TOMMs) are a class of post-translationally modified peptide natural products bearing azole and azoline heterocycles. The first step in heterocycle formation is carried out by a two component cyclodehydratase comprised of an E1 ubiquitin-activating and a YcaO superfamily member. Recent studies have demonstrated that the YcaO domain is responsible for cyclodehydration, while the TOMM E1 homologue is responsible for peptide recognition during azoline formation. Although all characterized TOMM biosynthetic clusters contain this canonical TOMM E1 homologue (C domain), we also identified a second, highly divergent E1 superfamily member, annotated as an Ocin-ThiF-like protein (F protein), associated with more than 300 TOMM biosynthetic clusters. Here we describe the in vitro reconstitution of a novel TOMM cyclodehydratase from such a cluster and demonstrate that this auxiliary protein is required for cyclodehydration. Using a combination of biophysical techniques, we demonstrate that the F protein, rather than the C domain, is responsible for engaging the peptide substrate. The C domain instead appears to serve as a scaffolding protein, bringing the catalytic YcaO domain and the peptide binding Ocin-ThiF-like protein into proximity. Our findings provide an updated biosynthetic framework that provides a foundation for the characterization and reconstitution of approximately 25% of bioinformatically identifiable TOMM synthetases.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Productos Biológicos/metabolismo , Hidroliasas/metabolismo , Oxazoles/metabolismo , Tiazoles/metabolismo , Secuencia de Aminoácidos , Bacillus/química , Proteínas Bacterianas/química , Bacteriocinas/química , Productos Biológicos/química , Vías Biosintéticas , Hidroliasas/química , Datos de Secuencia Molecular , Oxazoles/química , Señales de Clasificación de Proteína , Ribosomas/química , Ribosomas/metabolismo , Tiazoles/química
16.
Nat Chem Biol ; 8(6): 569-75, 2012 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-22522320

RESUMEN

Thiazole/oxazole-modified microcins (TOMMs) encompass a recently defined class of ribosomally synthesized natural products with a diverse set of biological activities. Although TOMM biosynthesis has been investigated for over a decade, the mechanism of heterocycle formation by the synthetase enzymes remains poorly understood. Using substrate analogs and isotopic labeling, we demonstrate that ATP is used to directly phosphorylate the peptide amide backbone during TOMM heterocycle formation. Moreover, we present what is to our knowledge the first experimental evidence that the D-protein component of the heterocycle-forming synthetase (YcaO/domain of unknown function 181 family member), formerly annotated as a docking protein involved in complex formation and regulation, is able to perform the ATP-dependent cyclodehydration reaction in the absence of the other TOMM biosynthetic proteins. Together, these data reveal the role of ATP in the biosynthesis of azole and azoline heterocycles in ribosomal natural products and prompt a reclassification of the enzymes involved in their installation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Bacteriocinas/biosíntesis , Complejos Multienzimáticos/metabolismo , Péptidos Cíclicos/biosíntesis , Amidas/metabolismo , Secuencia de Aminoácidos , Antibacterianos/química , Bacteriocinas/química , Bacteriocinas/genética , Dominio Catalítico , Ciclización , Hidrólisis , Datos de Secuencia Molecular , Familia de Multigenes , Oxazoles/metabolismo , Biosíntesis de Péptidos , Péptidos Cíclicos/química , Fosforilación , Especificidad por Sustrato , Tiazoles/metabolismo
17.
J Am Chem Soc ; 135(23): 8692-701, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23721104

RESUMEN

Current strategies for generating peptides and proteins bearing amide carbonyl derivatives rely on solid-phase peptide synthesis for amide functionalization. Although such strategies have been successfully implemented, technical limitations restrict both the length and sequence of the synthetic fragments. Herein we report the repurposing of a thiazole/oxazole-modified microcin (TOMM) cyclodehydratase to site-specifically install amide backbone labels onto diverse peptide substrates, a method we refer to as azoline-mediated peptide backbone labeling (AMPL). This convenient chemoenzymatic strategy can generate both thioamides and amides with isotopically labeled oxygen atoms. Moreover, we demonstrate the first leader peptide-independent activity of a TOMM synthetase, circumventing the requirement that sequences of interest be fused to a leader peptide for modification. Through bioinformatics-guided site-directed mutagenesis, we also convert a strictly dehydrogenase-dependent TOMM azole synthetase into an azoline synthetase. This vastly expands the spectrum of substrates modifiable by AMPL by allowing any in vitro reconstituted TOMM synthetase to be employed. To demonstrate the utility of AMPL for mechanistic enzymology studies, an (18)O-labeled substrate was generated to provide direct evidence that cyclodehydrations in TOMMs occur through the phosphorylation of the carbonyl oxygen preceding the cyclized residue. Furthermore, we demonstrate that AMPL is a useful tool for establishing the location of azolines both on in vitro modified peptides and azoline-containing natural products.


Asunto(s)
Amidas/metabolismo , Hidroliasas/metabolismo , Péptidos/metabolismo , Amidas/química , Bacteriocinas/química , Bacteriocinas/metabolismo , Hidroliasas/química , Estructura Molecular , Oxazoles/química , Oxazoles/metabolismo , Péptidos/química , Tiazoles/química , Tiazoles/metabolismo
18.
J Am Chem Soc ; 134(11): 5309-16, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22401305

RESUMEN

The thiazole/oxazole-modified microcins (TOMMs) represent a burgeoning class of ribosomal natural products decorated with thiazoles and (methyl)oxazoles originating from cysteines, serines, and threonines. The ribosomal nature of TOMMs allows for the generation of derivative products from mutations in the amino acid sequence of the precursor peptide, which ultimately manifest in differing structures and, sometimes, biological functions. Employing a TOMM system for the purpose of creating new structures and functions via combinatorial biosynthesis requires processing machinery that can tolerate highly variable substrates. In this study, TOMM enzymatic promiscuity was assessed using a currently uncharacterized cluster in Bacillus sp. Al Hakam. As determined by Fourier transform tandem mass spectrometry (FT-MS/MS), azole rings were formed in both a regio- and chemoselective fashion. Cognate and noncognate precursor peptides were modified in an overall C- to N-terminal directionality, which to date is unique among characterized ribosomal natural products. Studies focused on the inherent promiscuity of the biosynthetic machinery elucidated a modest bias for glycine at the preceding (-1) position and a remarkable flexibility in the following (+1) position, even allowing for the incorporation of charged amino acids and bisheterocyclization. Two unnatural substrates were utilized as the conclusive test of substrate flexibility, of which both were processed in a predictable fashion. A greater understanding of substrate processing and enzymatic tolerance toward unnatural substrates will prove beneficial when designing combinatorial libraries to screen for artificial TOMMs that exhibit desired activities.


Asunto(s)
Bacillus thuringiensis/enzimología , Hidroliasas/metabolismo , Péptidos/metabolismo , Hidroliasas/química , Oxazoles/química , Oxazoles/metabolismo , Péptidos/química , Tiazoles/química , Tiazoles/metabolismo
20.
ACS Chem Biol ; 8(3): 473-87, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23286465

RESUMEN

Ribosomally synthesized posttranslationally modified peptides (RiPPs) are a rapidly growing class of natural products with diverse structures and activities. In recent years, a great deal of progress has been made in elucidating the biosynthesis of various RiPP family members. As with the study of nonribosomal peptide and polyketide biosynthetic enzymes, these investigations have led to the discovery of entirely new biological chemistry. With each unique enzyme investigated, a more complex picture of Nature's synthetic potential is revealed. This Review focuses on recent reports (since 2008) that have changed the way that we think about ribosomal natural product biosynthesis and the enzymology of complex bond-forming reactions.


Asunto(s)
Productos Biológicos/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo , Productos Biológicos/química , Ciclización , Conformación Molecular , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA