Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750591

RESUMEN

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Asunto(s)
Células T Asesinas Naturales , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Femenino , Ratones , Células T Asesinas Naturales/inmunología , Viroterapia Oncolítica/métodos , Humanos , Línea Celular Tumoral , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Inmunoterapia/métodos , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Terapia Combinada , Metástasis de la Neoplasia , Vesiculovirus/genética , Células Dendríticas/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad
2.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36394457

RESUMEN

Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.


Asunto(s)
Hongos , ARN Bicatenario , Animales , Humanos , Plantas , Especificidad del Huésped , Filogenia
3.
J Gen Virol ; 103(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215107

RESUMEN

Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.


Asunto(s)
Mamíferos , ARN Bicatenario , Animales , Aves , Genoma Viral , Humanos , Plantas , Virión , Replicación Viral
4.
PLoS Pathog ; 11(6): e1004962, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26061049

RESUMEN

Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation.


Asunto(s)
Fusión de Membrana/fisiología , Reoviridae/fisiología , Proteínas Virales de Fusión/metabolismo , Animales , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Conformación Proteica , Reoviridae/patogenicidad , Transfección , Células Vero , Proteínas Virales de Fusión/química
5.
Biochim Biophys Acta ; 1848(2): 408-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450808

RESUMEN

The reovirus p10 fusion-associated small transmembrane (FAST) proteins are the smallest known membrane fusion proteins, and evolved specifically to mediate cell-cell, rather than virus-cell, membrane fusion. The 36-40-residue ectodomains of avian reovirus (ARV) and Nelson Bay reovirus (NBV) p10 contain an essential intramolecular disulfide bond required for both cell-cell fusion and lipid mixing between liposomes. To more clearly define the functional, biochemical and biophysical features of this novel fusion peptide, synthetic peptides representing the p10 ectodomains of ARV and NBV were analyzed by solution-state NMR spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy-based hydrophobicity analysis, and liposome binding and fusion assays. Results indicate that disulfide bond formation promotes exposure of hydrophobic residues, as indicated by bis-ANS binding and time-dependent peptide aggregation under aqueous conditions, implying the disulfide bond creates a small, geometrically constrained, cystine noose. Noose formation is required for peptide partitioning into liposome membranes and liposome lipid mixing, and electron microscopy revealed that liposome-liposome fusion occurs in the absence of liposome tubulation. In addition, p10 fusion peptide activity, but not membrane partitioning, is dependent on membrane cholesterol.


Asunto(s)
Colesterol/química , Cistina/química , Liposomas/química , Proteínas Virales de Fusión/química , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Fusión de Membrana , Datos de Secuencia Molecular , Orthoreovirus/química , Orthoreovirus Aviar/química , Estructura Secundaria de Proteína , Proteínas Virales de Fusión/síntesis química
6.
PLoS Pathog ; 10(3): e1004023, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651689

RESUMEN

The homologous p10 fusion-associated small transmembrane (FAST) proteins of the avian (ARV) and Nelson Bay (NBV) reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER). The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1) ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2) p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3) the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic efficiency and species-specific assembly of p10 homomultimers into cholesterol-dependent fusion platforms in the plasma membrane.


Asunto(s)
Orthoreovirus/fisiología , Infecciones por Reoviridae/metabolismo , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Colesterol/metabolismo , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Microscopía Fluorescente , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Terciaria de Proteína , Transfección , Proteínas Virales de Fusión/química
7.
Am J Pathol ; 185(4): 927-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25794704

RESUMEN

Macrophages are increasingly recognized as a potential therapeutic target in myocardial fibrosis via interactions with fibroblasts. We have characterized macrophage depletion and inhibition of nonclassical macrophage migration, in addition to direct interactions between nonclassical macrophages and fibroblasts in angiotensin II (AngII)-mediated, hypertensive myocardial fibrosis. Macrophage depletion was achieved by daily i.v. clodronate liposomes (-1 day to +3 days) during AngII infusion. Cx3cr1(-/-) mice were used to inhibit nonclassical macrophage migration. Macrophage phenotype (F4/80, CD11b, Ly6C) was characterized by immunofluorescence and flow cytometry. Collagen was assessed by Sirius Red/Fast Green. Quantitative real-time RT-PCR was performed for transcript levels. AngII/wild-type (WT) mice displayed significant infiltrate and fibrosis compared with saline/WT, which was virtually ablated by clodronate liposomes independent of hypertension. In vitro data supported M2 macrophages promoting fibroblast differentiation and collagen production. AngII/Cx3cr1(-/-) mice, however, significantly increased macrophage infiltrate and fibrosis relative to AngII/WT. AngII/Cx3cr1(-/-) mice also showed an M1 phenotypic shift relative to WT mice in, which the predominant phenotype was Ly6C(low), CD206(+) (M2). Myocardial IL-1ß was significantly up-regulated, whereas transforming growth factor ß down-regulated with this M1 shift. We demonstrated that infiltrating macrophages are critical to AngII-mediated myocardial fibrosis by preventing the development of fibrosis after liposomal depletion of circulating monocytes. Our findings also suggest that some macrophages, namely M2, may confer a protective myocardial environment that may prevent excessive tissue injury.


Asunto(s)
Macrófagos/metabolismo , Miocardio/patología , Actinas/metabolismo , Administración Intravenosa , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Antígenos Ly/metabolismo , Receptor 1 de Quimiocinas CX3C , Ácido Clodrónico/administración & dosificación , Ácido Clodrónico/farmacología , Colágeno/biosíntesis , Electrocardiografía , Fibrosis , Mediadores de Inflamación/metabolismo , Liposomas/administración & dosificación , Liposomas/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Miocardio/metabolismo , Células 3T3 NIH , Receptores de Quimiocina/deficiencia , Receptores de Quimiocina/metabolismo
8.
J Virol ; 88(11): 6528-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24672027

RESUMEN

Using lysophosphatidylcholine, a curvature-inducing lysolipid, we have isolated a reversible, "stalled pore" phenotype during syncytium formation induced by the p14 fusion-associated small transmembrane (FAST) protein and influenza virus hemagglutinin (HA) fusogens. This is the first evidence that lateral propagation of stable fusion pores leading to syncytiogenesis mediated by diverse viral fusogens is inhibited by promotion of positive membrane curvature in the outer leaflets of the lipid bilayer surrounding intercellular fusion pores.


Asunto(s)
Células Gigantes/fisiología , Células Gigantes/virología , Hemaglutininas Virales/metabolismo , Lisofosfatidilcolinas/metabolismo , Fusión de Membrana/fisiología , Modelos Biológicos , Proteínas Virales de Fusión/metabolismo , Animales , Chlorocebus aethiops , Microscopía Fluorescente , Células Vero
9.
J Virol ; 88(11): 6137-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648446

RESUMEN

UNLABELLED: Orthoreovirus fusion-associated small transmembrane (FAST) proteins are dedicated cell-cell fusogens responsible for multinucleated syncytium formation and are virulence determinants of the fusogenic reoviruses. While numerous studies on the FAST proteins and enveloped-virus fusogens have delineated steps involved in membrane fusion and pore formation, little is known about the mechanics of pore expansion needed for syncytiogenesis. We now report that RNA interference (RNAi) knockdown of annexin A1 (AX1) expression dramatically reduced both reptilian reovirus p14 and measles virus F and H protein-mediated pore expansion during syncytiogenesis but had no effect on pore formation. A similar effect was obtained by chelating intracellular calcium, which dramatically decreased syncytiogenesis in the absence of detectable effects on p14-induced pore formation. Coimmunoprecipitation revealed calcium-dependent interaction between AX1 and p14 or measles virus F and H proteins, and fluorescence resonance energy transfer (FRET) demonstrated calcium-dependent p14-AX1 interactions in cellulo. Furthermore, antibody inhibition of extracellular AX1 had no effect on p14-induced syncytium formation but did impair cell-cell fusion mediated by the endogenous muscle cell fusion machinery in C2C12 mouse myoblasts. AX1 can therefore exert diverse, fusogen-specific effects on cell-cell fusion, functioning as an extracellular mediator of differentiation-dependent membrane fusion or as an intracellular promoter of postfusion pore expansion and syncytium formation following virus-mediated cell-cell fusion. IMPORTANCE: Numerous enveloped viruses and nonenveloped fusogenic orthoreoviruses encode membrane fusion proteins that induce syncytium formation, which has been linked to viral pathogenicity. Considerable insights into the mechanisms of membrane fusion have been obtained, but processes that drive postfusion expansion of fusion pores to generate syncytia are poorly understood. This study identifies intracellular calcium and annexin A1 (AX1) as key factors required for efficient pore expansion during syncytium formation mediated by the reptilian reovirus p14 and measles virus F and H fusion protein complexes. Involvement of intracellular AX1 in syncytiogenesis directly correlates with a requirement for intracellular calcium in p14-AX1 interactions and pore expansion but not membrane fusion and pore formation. This is the first demonstration that intracellular AX1 is involved in pore expansion, which suggests that the AX1 pathway may be a common host cell response needed to resolve virus-induced cell-cell fusion pores.


Asunto(s)
Anexina A1/metabolismo , Calcio/metabolismo , Regulación Viral de la Expresión Génica/genética , Células Gigantes/virología , Virus del Sarampión/metabolismo , Orthoreovirus/metabolismo , Proteínas Virales/metabolismo , Animales , Fusión Celular , Línea Celular , Chlorocebus aethiops , ADN Complementario/genética , Fibroblastos , Transferencia Resonante de Energía de Fluorescencia , Regulación Viral de la Expresión Génica/fisiología , Células Gigantes/fisiología , Proteínas Fluorescentes Verdes , Humanos , Ratones , Orthoreovirus/patogenicidad , Plásmidos/genética , Codorniz , Interferencia de ARN , Células Vero , Proteínas Virales de Fusión/metabolismo , Virulencia
10.
FASEB J ; 27(12): 5046-58, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24005909

RESUMEN

Myopodin is an actin-binding protein that promotes cancer cell migration in response to serum stimulation and is associated with invasive tumor development. To determine whether enhanced migration reflects changes in actin cytoskeleton remodeling, fluorescence confocal microscopy was used to examine the composition and morphology of filamentous actin structures in mock-transduced cells vs. stably transduced PC3 cells expressing human myopodin isoforms, and the chemokinetic response of cells was quantified using transwell assays. The same approaches were used to analyze the effects of external migration stimuli, actin polymerization inhibitors or deletion of the isoform-specific amino- and/or carboxy termini on cell migration and actin bundle formation. Results indicate that the termini of the myopodin isoforms differentially alter the formation of morphologically distinct F-actin networks that also differ in their myosin and myopodin staining patterns. Furthermore, enhanced cell migration was reduced by >50% when actin bundle formation was impaired by myopodin-truncation, low concentrations of an actin polymerization inhibitor, or in the absence of an external migration stimulus. Human myopodin isoforms are therefore potent regulators of stress fiber formation, inducing the formation of biochemically and morphologically distinct F-actin networks in the cell body whose presence directly correlates with increased cell migration.


Asunto(s)
Movimiento Celular , Proteínas de Microfilamentos/metabolismo , Fibras de Estrés/metabolismo , Línea Celular Tumoral , Humanos , Proteínas de Microfilamentos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estrés/ultraestructura
11.
J Biol Chem ; 287(5): 3403-14, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22170056

RESUMEN

The p15 fusion-associated small transmembrane (FAST) protein is a nonstructural viral protein that induces cell-cell fusion and syncytium formation. The exceptionally small, myristoylated N-terminal ectodomain of p15 lacks any of the defining features of a typical viral fusion protein. NMR and CD spectroscopy indicate this small fusion module comprises a left-handed polyproline type II (PPII) helix flanked by small, unstructured N and C termini. Individual prolines in the 6-residue proline-rich motif are highly tolerant of alanine substitutions, but multiple substitutions that disrupt the PPII helix eliminate cell-cell fusion activity. A synthetic p15 ectodomain peptide induces lipid mixing between liposomes, but with unusual kinetics that involve a long lag phase before the onset of rapid lipid mixing, and the length of the lag phase correlates with the kinetics of peptide-induced liposome aggregation. Lipid mixing, liposome aggregation, and stable peptide-membrane interactions are all dependent on both the N-terminal myristate and the presence of the PPII helix. We present a model for the mechanism of action of this novel viral fusion peptide, whereby the N-terminal myristate mediates initial, reversible peptide-membrane binding that is stabilized by subsequent amino acid-membrane interactions. These interactions induce a biphasic membrane fusion reaction, with peptide-induced liposome aggregation representing a distinct, rate-limiting event that precedes membrane merger. Although the prolines in the proline-rich motif do not directly interact with membranes, the PPII helix may function to force solvent exposure of hydrophobic amino acid side chains in the regions flanking the helix to promote membrane binding, apposition, and fusion.


Asunto(s)
Lipoilación , Modelos Químicos , Ácido Mirístico/química , Péptidos/química , Reoviridae/química , Proteínas Virales de Fusión/química , Secuencias de Aminoácidos , Animales , Chlorocebus aethiops , Liposomas/química , Liposomas/metabolismo , Ácido Mirístico/metabolismo , Resonancia Magnética Nuclear Biomolecular , Péptidos/síntesis química , Péptidos/genética , Péptidos/metabolismo , Estructura Terciaria de Proteína , Reoviridae/genética , Reoviridae/metabolismo , Células Vero , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
12.
J Gen Virol ; 94(Pt 5): 1039-1050, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23343626

RESUMEN

Piscine reovirus (PRV) is a tentative new member of the family Reoviridae and has been linked to heart and skeletal muscle inflammation in farmed Atlantic salmon (Salmo salar L.). Recent sequence-based evidence suggests that PRV is about equally related to members of the genera Orthoreovirus and Aquareovirus. Sequence similarities have also suggested that PRV might encode a fusion-associated small transmembrane (FAST) protein, which in turn suggests that PRV might be the prototype of a new genus with syncytium-inducing potential. In previous support of this designation has been the absence of identifiable PRV-encoded homologues of either the virion outer-clamp protein of ortho- and aquareoviruses or the virion outer-fibre protein of most orthoreoviruses. In the current report, we have provided experimental evidence that the putative p13 FAST protein of PRV lacks the defining feature of the FAST protein family - the ability to induce syncytium formation. Instead, p13 is the first example of a cytosolic, integral membrane protein encoded by ortho- or aquareoviruses, and induces cytotoxicity in the absence of cell-cell fusion. Sequence analysis also identified signature motifs of the outer-clamp and outer-fibre proteins of other reoviruses in two of the predicted PRV gene products. Based on these findings, we conclude that PRV does not encode a FAST protein and is therefore unlikely to be a new fusogenic reovirus. The presence of a novel integral membrane protein and two previously unrecognized, essential outer-capsid proteins has important implications for the biology, evolution and taxonomic classification of this virus.


Asunto(s)
Proteínas de la Cápside/genética , Enfermedades de los Peces/virología , Proteínas de la Membrana/genética , Infecciones por Reoviridae/veterinaria , Reoviridae/clasificación , Salmón , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Proliferación Celular , Citoplasma , Células Gigantes , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Orthoreovirus/clasificación , Orthoreovirus/genética , Orthoreovirus/aislamiento & purificación , Orthoreovirus/metabolismo , Filogenia , Proteínas Recombinantes de Fusión , Reoviridae/química , Reoviridae/genética , Reoviridae/aislamiento & purificación , Infecciones por Reoviridae/virología , Alineación de Secuencia , Células Vero , Virión
13.
Viruses ; 15(2)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36851515

RESUMEN

The physical entry of virus particles into cells triggers an innate immune response that is dependent on both calcium and nucleic acid sensors, with particles containing RNA or DNA genomes detected by RNA or DNA sensors, respectively. While membrane fusion in the absence of viral nucleic acid causes an innate immune response that is dependent on calcium, the involvement of nucleic acid sensors is poorly understood. Here, we used lipoplexes containing purified reovirus p14 fusion protein as a model of exogenous or fusion from without and a cell line expressing inducible p14 protein as a model of endogenous or fusion from within to examine cellular membrane fusion sensing events. We show that the cellular response to membrane fusion in both models is dependent on calcium, IRF3 and IFN. The method of sensing fusion, however, differs between fusion from without and fusion from within. Exogenous p14 lipoplexes are detected by RIG-I-like RNA sensors, whereas fusion by endogenous p14 requires both RIG-I and STING to trigger an IFN response. The source of nucleic acid that is sensed appears to be cellular in origin. Future studies will investigate the source of endogenous nucleic acids recognized following membrane fusion events.


Asunto(s)
Ácidos Nucleicos , Virosis , Humanos , Calcio , ARN , Anticuerpos Antivirales
14.
Viruses ; 15(7)2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37515296

RESUMEN

Vesicle-encapsulated nonenveloped viruses are a recently recognized alternate form of nonenveloped viruses that can avoid immune detection and potentially increase systemic transmission. Avian orthoreoviruses (ARVs) are the leading cause of various disease conditions among birds and poultry. However, whether ARVs use cellular vesicle trafficking routes for egress and cell-to-cell transmission is still poorly understood. We demonstrated that fusogenic ARV-infected quail cells generated small (~100 nm diameter) extracellular vesicles (EVs) that contained electron-dense material when observed by transmission electron microscope. Cryo-EM tomography indicated that these vesicles did not contain ARV virions or core particles, but the EV fractions of OptiPrep gradients did contain a small percent of the ARV virions released from cells. Western blotting of detergent-treated EVs revealed that soluble virus proteins and the fusogenic p10 FAST protein were contained within the EVs. Notably, virus particles mixed with the EVs were up to 50 times more infectious than virions alone. These results suggest that EVs and perhaps fusogenic FAST-EVs could contribute to ARV virulence.


Asunto(s)
Vesículas Extracelulares , Orthoreovirus Aviar , Vesículas Extracelulares/metabolismo , Proteínas Virales/metabolismo
15.
Carcinogenesis ; 33(11): 2100-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915763

RESUMEN

The gene encoding myopodin, an actin binding protein, is commonly deleted in invasive, but not in indolent, prostate cancers. There are conflicting reports on the effects of myopodin expression on prostate cancer cell migration and invasion. The recent recognition that myopodin is expressed as four different isoforms further complicates our understanding of how this potentially important invasive prostate cancer biomarker affects tumor cell migration and invasion. We now show that myopodin affects the chemokinetic, rather than the chemotactic, properties of PC3 prostate cancer cells. Furthermore, all myopodin isoforms can either increase or decrease PC3 cell migration in response to different chemokinetic stimuli. These migration properties were reflected by differences in cell morphology and the relative dependence on Rho-ROCK signaling pathways induced by the environmental stimuli. Truncation analysis determined that a unique 9-residue C-terminal sequence in the shortest isoform and the conserved, PDZ domain-containing N-terminal region of the long isoforms both contribute to the ability of myopodin to alter the response of PC3 cells to chemokinetic stimuli. Matrigel invasion assays also indicated that myopodin primarily affects the migration, rather than the invasion, properties of PC3 cells. The correlation between loss of myopodin expression and invasive prostate cancer therefore reflects complex myopodin interactions with pathways that regulate the cellular migration response to diverse signals that may be present in a tumor microenvironment.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocinas/farmacología , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Western Blotting , Movimiento Celular/fisiología , Células Cultivadas , Clonación Molecular , Humanos , Inmunoprecipitación , Masculino , Ratones , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo I/metabolismo , Miosina Tipo III/metabolismo , Células 3T3 NIH , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Isoformas de Proteínas , Transducción de Señal/efectos de los fármacos
16.
J Virol ; 85(10): 4707-19, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21367887

RESUMEN

The fusogenic reoviruses induce syncytium formation using the fusion-associated small transmembrane (FAST) proteins. A recent study indicated the p14 FAST protein transmembrane domain (TMD) can be functionally replaced by the TMDs of the other FAST proteins but not by heterologous TMDs, suggesting that the FAST protein TMDs are modular fusion units. We now show that the p15 FAST protein is also a modular fusogen, as indicated by the functional replacement of the p15 ectodomain with the corresponding domain from the p14 FAST protein. Paradoxically, the p15 TMD is not interchangeable with the TMDs of the other FAST proteins, implying that unique attributes of the p15 TMD are required when this fusion module is functioning in the context of the p15 ecto- and/or endodomain. A series of point substitutions, truncations, and reextensions were created in the p15 TMD to define features that are specific to the functioning of the p15 TMD. Removal of only one or two residues from the N terminus or four residues from the C terminus of the p15 TMD eliminated membrane fusion activity, and there was a direct correlation between the fusion-promoting function of the p15 TMD and the presence of N-terminal, hydrophobic ß-branched residues. Substitution of the glycine residues and triserine motif present in the p15 TMD also impaired or eliminated the fusion-promoting activity of the p15 TMD. The ability of the p15 TMD to function in an ecto- and endodomain-specific context is therefore influenced by stringent sequence requirements that reflect the importance of TMD polar residues and helix-destabilizing residues.


Asunto(s)
Fusión de Membrana , Reoviridae/fisiología , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Análisis Mutacional de ADN , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Reoviridae/genética , Eliminación de Secuencia
17.
J Virol ; 85(20): 10926-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21813605

RESUMEN

We previously found that enveloped virus binding and penetration are necessary to initiate an interferon-independent, IRF3-mediated antiviral response. To investigate whether membrane perturbations that accompany membrane fusion-dependent enveloped-virus entry are necessary and sufficient for antiviral-state induction, we utilized a reovirus fusion-associated small transmembrane (FAST) protein. Membrane disturbances during FAST protein-mediated fusion, in the absence of additional innate immune response triggers, are sufficient to elicit interferon-stimulated gene induction and establishment of an antiviral state. Using sensors of membrane disruption to activate an IRF3-dependent, interferon-independent antiviral state may provide cells with a rapid, broad-spectrum innate immune response to enveloped-virus infections.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/virología , Factor 3 Regulador del Interferón/metabolismo , Reoviridae/inmunología , Internalización del Virus , Animales , Chlorocebus aethiops , Regulación de la Expresión Génica , Células Vero
18.
J Virol ; 85(15): 7483-95, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21593159

RESUMEN

Baboon reovirus (BRV) is a member of the fusogenic subgroup of orthoreoviruses. Unlike most other members of its genus, BRV lacks S-segment coding sequences for the outer fiber protein that binds to cell surface receptors. It shares this lack with aquareoviruses, which constitute a related genus and are also fusogenic. We used electron cryomicroscopy and three-dimensional image reconstruction to determine the BRV virion structure at 9.0-Å resolution. The results show that BRV lacks a protruding fiber at its icosahedral 5-fold axes or elsewhere. The results also show that BRV is like nonfusogenic mammalian and fusogenic avian orthoreoviruses in having 150 copies of the core clamp protein, not 120 as in aquareoviruses. On the other hand, there are no hub-and-spoke complexes attributable to the outer shell protein in the P2 and P3 solvent channels of BRV, which makes BRV like fusogenic avian orthoreoviruses and aquareoviruses but unlike nonfusogenic mammalian orthoreoviruses. The outermost "flap" domains of the BRV core turret protein appear capable of conformational variability within the virion, a trait previously unseen among other ortho- and aquareoviruses. New cDNA sequence determinations for the BRV L1 and M2 genome segments, encoding the core turret and outer shell proteins, were helpful for interpreting the structural features of those proteins. Based on these findings, we conclude that the evolution of ortho- and aquareoviruses has included a series of discrete gains or losses of particular components, several of which cross taxonomic boundaries. Gain or loss of adhesion fibers is one of several common themes in double-stranded RNA virus evolution.


Asunto(s)
Orthoreovirus/química , Virión/química , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Orthoreovirus/fisiología , Filogenia , Conformación Proteica , Homología de Secuencia de Aminoácido , Células Vero , Virión/genética , Virión/ultraestructura
19.
Methods ; 55(2): 122-6, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21958986

RESUMEN

Membrane fusion is a protein catalyzed biophysical reaction that involves the simultaneous intermixing of two phospholipid bilayers and of the aqueous compartments bound by their respective bilayers. In the case of enveloped virus fusogens, short hydrophobic or amphipathic fusion peptides that are components of the larger fusion complex are essential for the membrane merger event. The process of cell-cell membrane fusion and syncytium formation induced by the nonenveloped fusogenic orthoreoviruses is driven by the Fusion-Associated Small Transmembrane (FAST) proteins, which are similarly dependent on the action of fusion peptides. In this article, we describe some simple methods for the biophysical characterization of viral membrane fusion peptides. Liposomes serve as an ideal model system for characterizing peptide-membrane interactions because their size, shape and composition can be readily manipulated. We present details of fluorescence assays used to elucidate the kinetics of membrane fusion as well as complimentary assays used to characterize peptide-induced liposome binding and aggregation.


Asunto(s)
Proteínas Virales de Fusión/química , Internalización del Virus , Animales , Línea Celular Tumoral , Núcleo Celular , Emulsiones/química , Transferencia Resonante de Energía de Fluorescencia , Fluorometría/instrumentación , Fluorometría/métodos , Células Gigantes , Liposomas/química , Proteínas de la Fusión de la Membrana , Fosfolípidos/química , Unión Proteica , Rodaminas/química , Sonicación/métodos , Espectrofotometría/métodos
20.
Nucleic Acids Res ; 38(20): 7260-72, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20610435

RESUMEN

The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3'-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.


Asunto(s)
Orthoreovirus Aviar/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Animales , Línea Celular , Codón Iniciador , Sistemas de Lectura Abierta , Caperuzas de ARN/fisiología , Secuencias Reguladoras de Ácido Ribonucleico , Ribosomas/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA