Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dis Aquat Organ ; 124(2): 131-144, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425426

RESUMEN

The Mekong Delta in Vietnam is one of the most productive aquaculture regions in the world, in which the red tilapia (Oreochromis spp.) industry is a small-scale industry that mainly supplies local markets in the delta region. Little is known about the frequency of mortality events and health management in this sector. We describe red tilapia floating cage production systems in the Mekong Delta, Vietnam, for the purposes of quantifying mortality and associated production factors, and describing practices that may influence pathogen introduction and spread to and from farms. In July 2014, approximately 50 red tilapia farmers from 4 provinces (201 farmers in total) were randomly selected and interviewed. Median overall perceived mortality (PM) within a production cycle was 35%. Overall PM was found to be affected by province (p < 0.01), age of farmers (p = 0.01), anticipated main reason for PM in the first 2 wk (p = 0.03), most common market for the fish (p = 0.02), and whether farmers recorded stocking information (p = 0.01). Based on the interviews, we describe and discuss processes that potentially affect pathogen introduction and spread on these farms, such as movements of live and dead fish, distances between farms, mechanical transmission, and biosecurity practices such as treating fish before stocking, using disinfectants, and sharing equipment, and harvesters' movements. This study provides fundamental understanding of red tilapia aquaculture management in the Mekong Delta, and describes management factors that could become important in the event of disease outbreaks.


Asunto(s)
Acuicultura/métodos , Enfermedades de los Peces/prevención & control , Tilapia/fisiología , Animales , Acuicultura/normas , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/mortalidad , Humanos , Encuestas y Cuestionarios , Vietnam/epidemiología
2.
Microorganisms ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930563

RESUMEN

Edwardsiella ictaluri is responsible for causing bacillary necrosis (BNP) in striped catfish (Pangasianodon hypophthalmus) in Vietnam. This study offers a comprehensive genomic characterization of E. ictaluri to enhance understanding of the molecular epidemiology, virulence, and antimicrobial resistance. E. ictaluri isolates were collected from diseased striped catfish in the Mekong Delta. The species was confirmed through PCR. Antimicrobial susceptibility testing was conducted using minimum inhibitory concentrations for commonly used antimicrobials. Thirty representative isolates were selected for whole genome sequencing to delineate their genomic profiles and phylogeny. All strains belonged to ST-26 and exhibited genetic relatedness, differing by a maximum of 90 single nucleotide polymorphisms. Most isolates carried multiple antimicrobial resistance genes, with the tet(A) gene present in 63% and floR in 77% of the genomes. The ESBL gene, blaCTX-M-15, was identified in 30% of the genomes. Three plasmid replicon types were identified: IncA, p0111, and IncQ1. The genomes clustered into two clades based on their virulence gene profile, one group with the T3SS genes and one without. The genetic similarity among Vietnamese isolates suggests that disease spread occurs within the Mekong region, underscoring the importance of source tracking, reservoir identification, and implementation of necessary biosecurity measures to mitigate spread of BNP.

3.
Front Microbiol ; 14: 1254781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808293

RESUMEN

Introduction: Motile Aeromonas septicemia (MAS) is a burden for striped catfish (Pangasius hypophthalmus) farmers in Vietnam. MAS can be caused by several species of Aeromonas but Aeromonas hydrophila is seen as the leading cause of MAS in aquaculture, but recent reports suggest that A. dhakensis is also causing MAS. Methods: Here we investigated the bacterial etiology of MAS and compared the genomic features of A. hydrophila and A. dhakensis. We collected 86 isolates from diseased striped catfish fingerlings over 5 years from eight provinces in Vietnam. Species identification was done using PCR, MALDI-TOF and whole genome sequence (WGS). The MICs of commonly used antimicrobials was established. Thirty presumed A. hydrophila isolates were sequenced for species confirmation and genomic comparison. A phylogenetic analysis was conducted using publicly available sequences and sequences from this study. Results: A total of 25/30 isolates were A. dhakensis sequence type (ST) 656 and 5/30 isolates were A. hydrophila ST 251. Our isolates and all publicly available A. hydrophila isolates from Vietnam belonged to ST 251 and differed with <200 single nucleotide polymorphisms (SNP). Similarly, all A. dhakensis isolates from Vietnam belonged to ST 656 and differed with <100 SNPs. The tet(A) gene was found in 1/5 A. hydrophila and 19/25 A. dhakensis. All A. hydrophila had an MIC ≤2 mg/L while 19/25 A. dhakensis had MIC ≥8 mg/L for oxytetracycline. The floR gene was only found in A. dhakensis (14/25) which showed a MIC ≥8 mg/L for florfenicol. Key virulence genes, i.e., aerA/act, ahh1 and hlyA were present in all genomes, while ast was only present in A. dhakensis. Discussion: This study confirms previous findings where A. dhakensis was the dominating pathogen causing MAS and that the importance of A. hydrophila has likely been overestimated. The differences in antimicrobial susceptibility between the two species could indicate a need for targeted antimicrobial treatment plans. The lipopolysaccharide regions and outer membrane proteins did not significantly differ in their immunogenic potentials, but it remains to be determined with in vivo experiments whether there is a difference in the efficacy of available vaccines against A. hydrophila and A. dhakensis.

4.
Dis Aquat Organ ; 100(1): 83-8, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-22885517

RESUMEN

The bacterium Flavobacterium columnare was recovered and identified as the aetiological agent causing freshwater columnaris infection in farmed striped catfish Pangasianodon hypophthalmus (Sauvage) fingerlings that had suffered high mortality rates within commercial hatchery ponds in Vietnam. The gross clinical signs were typical of columnaris-infected fish. Histological examination found numerous Gram-negative, filamentous bacteria present on the skin, muscle and gill tissues of affected fish. The yellow-pigmented bacteria were isolated and identified as F. columnare using primary, biochemical and PCR methods. An experimental immersion-challenge study with 2 strains was also performed. It fulfilled Koch's postulates and showed a median lethal concentration (LC50) of 4.27 × 105 and 1.66 × 106 cfu ml-1 for the F. columnare strains FC-HN and FC-CT, respectively. To the best of our knowledge this is the first report of freshwater columnaris infection in P. hypophthalmus.


Asunto(s)
Bagres/microbiología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/aislamiento & purificación , Animales , Acuicultura , Brotes de Enfermedades/veterinaria , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/patología , Infecciones por Flavobacteriaceae/epidemiología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/patología , Flavobacterium/clasificación , Factores de Tiempo , Vietnam/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA