Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Biol Sci ; 291(2015): 20232669, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264781

RESUMEN

Approximately a third of all annual greenhouse gas emissions globally are directly or indirectly associated with the food system, and over a half of these are linked to livestock production. In temperate oceanic regions, such as the UK, most meat and dairy is produced in extensive systems based on pasture. There is much interest in the extent to which such grassland may be able to sequester and store more carbon to partially or completely mitigate other greenhouse gas emissions in the system. However, answering this question is difficult due to context-specificity and a complex and sometimes inconsistent evidence base. This paper describes a project that set out to summarize the natural science evidence base relevant to grassland management, grazing livestock and soil carbon storage potential in as policy-neutral terms as possible. It is based on expert appraisal of a systematically assembled evidence base, followed by a wide stakeholders engagement. A series of evidence statements (in the appendix of this paper) are listed and categorized according to the nature of the underlying information, and an annotated bibliography is provided in the electronic supplementary material.


Asunto(s)
Gases de Efecto Invernadero , Disciplinas de las Ciencias Naturales , Animales , Pradera , Ganado , Carbono , Suelo
2.
Glob Chang Biol ; 29(7): 1998-2014, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36751727

RESUMEN

Microbial necromass is a large and persistent component of soil organic carbon (SOC), especially under croplands. The effects of cropland management on microbial necromass accumulation and its contribution to SOC have been measured in individual studies but have not yet been summarized on the global scale. We conducted a meta-analysis of 481-paired measurements from cropland soils to examine the management effects on microbial necromass and identify the optimal conditions for its accumulation. Nitrogen fertilization increased total microbial necromass C by 12%, cover crops by 14%, no or reduced tillage (NT/RT) by 20%, manure by 21%, and straw amendment by 21%. Microbial necromass accumulation was independent of biochar addition. NT/RT and straw amendment increased fungal necromass and its contribution to SOC more than bacterial necromass. Manure increased bacterial necromass higher than fungal, leading to decreased ratio of fungal-to-bacterial necromass. Greater microbial necromass increases after straw amendments were common under semi-arid and in cool climates in soils with pH <8, and were proportional to the amount of straw input. In contrast, NT/RT increased microbial necromass mainly under warm and humid climates. Manure application increased microbial necromass irrespective of soil properties and climate. Management effects were especially strong when applied during medium (3-10 years) to long (10+ years) periods to soils with larger initial SOC contents, but were absent in sandy soils. Close positive links between microbial biomass, necromass and SOC indicate the important role of stabilized microbial products for C accrual. Microbial necromass contribution to SOC increment (accumulation efficiency) under NT/RT, cover crops, manure and straw amendment ranged from 45% to 52%, which was 9%-16% larger than under N fertilization. In summary, long-term cropland management increases SOC by enhancing microbial necromass accumulation, and optimizing microbial necromass accumulation and its contribution to SOC sequestration requires site-specific management.


Asunto(s)
Carbono , Suelo , Suelo/química , Estiércol , Nitrógeno , Productos Agrícolas , Agricultura
3.
Glob Chang Biol ; 28(4): 1643-1658, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767289

RESUMEN

The extent to which soil erosion is a net source or sink of carbon globally remains unresolved but has the potential to play a key role in determining the magnitude of CO2 emissions from land-use change in rapidly eroding landscapes. The effects of soil erosion on carbon storage in low-input agricultural systems, in acknowledged global soil erosion hotspots in developing countries, are especially poorly understood. Working in one such hotspot, the Indian Himalaya, we measured and modelled field-scale soil budgets, to quantify erosion-induced changes in soil carbon storage. In addition, we used long-term (1-year) incubations of separate and mixed soil horizons to better understand the mechanisms controlling erosion-induced changes in soil carbon cycling. We demonstrate that high rates of soil erosion did not promote a net carbon loss to the atmosphere at the field scale. Furthermore, our experiments showed that rates of decomposition in the organic matter-rich subsoil layers in depositional areas were lower per unit of soil carbon than from other landscape positions; however, these rates could be increased by mixing with topsoils. The results indicate that, the burial of soil carbon, and separation from fresh carbon inputs, led to reduced rates of decomposition offsetting potential carbon losses during soil erosion and transport within the cultivated fields. We conclude that the high rates of erosion experienced in these Himalayan soils do not, in isolation, drive substantial emissions of organic carbon, and there is the potential to promote carbon storage through sustainable agricultural practice.


Asunto(s)
Carbono , Suelo , Agricultura/métodos , Atmósfera , Ciclo del Carbono
4.
Glob Chang Biol ; 27(10): 2011-2028, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33528058

RESUMEN

Current consensus on global climate change predicts warming trends with more pronounced temperature changes in winter than summer in the Northern Hemisphere at high latitudes. Moderate increases in soil temperature are generally related to faster rates of soil organic carbon (SOC) decomposition in Northern ecosystems, but there is evidence that SOC stocks have remained remarkably stable or even increased on the Tibetan Plateau under these conditions. This intriguing observation points to altered soil microbial mediation of carbon-cycling feedbacks in this region that might be related to seasonal warming. This study investigated the unexplained SOC stabilization observed on the Tibetan Plateau by quantifying microbial responses to experimental seasonal warming in a typical alpine meadow. Ecosystem respiration was reduced by 17%-38% under winter warming compared with year-round warming or no warming and coincided with decreased abundances of fungi and functional genes that control labile and stable organic carbon decomposition. Compared with year-round warming, winter warming slowed macroaggregate turnover rates by 1.6 times, increased fine intra-aggregate particulate organic matter content by 75%, and increased carbon stabilized in microaggregates within stable macroaggregates by 56%. Larger bacterial "necromass" (amino sugars) concentrations in soil under winter warming coincided with a 12% increase in carboxyl-C. These results indicate the enhanced physical preservation of SOC under winter warming and emphasize the role of soil microorganisms in aggregate life cycles. In summary, the divergent responses of SOC persistence in soils exposed to winter warming compared to year-round warming are explained by the slowing of microbial decomposition but increasing physical protection of microbially derived organic compounds. Consequently, the soil microbial response to winter warming on the Tibetan Plateau may cause negative feedbacks to global climate change and should be considered in Earth system models.


Asunto(s)
Carbono , Suelo , Ecosistema , Estaciones del Año , Microbiología del Suelo
5.
Nature ; 513(7516): 81-4, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25186902

RESUMEN

Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.


Asunto(s)
Dióxido de Carbono/metabolismo , Retroalimentación , Oxígeno/metabolismo , Microbiología del Suelo , Temperatura , Regiones Árticas , Carbono/metabolismo , Clima Frío , Calentamiento Global , Nitrógeno/metabolismo , Suelo/química , Clima Tropical
6.
Glob Chang Biol ; 25(10): 3267-3281, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31273887

RESUMEN

Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N-limited temperate forests. In N-rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old-growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low-N), 100 (Medium-N), and 150 (High-N) kg N ha-1  year-1 . Soil organic carbon (SOC) content increased under High-N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2 O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High-N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2 O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.


Asunto(s)
Nitrógeno , Suelo , Carbono , Ciclo del Carbono , Bosques
7.
Ecol Lett ; 19(5): 528-36, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26932261

RESUMEN

Antarctica's extreme environment and geographical isolation offers a useful platform for testing the relative roles of environmental selection and dispersal barriers influencing fungal communities. The former process should lead to convergence in community composition with other cold environments, such as those in the Arctic. Alternatively, dispersal limitations should minimise similarity between Antarctica and distant northern landmasses. Using high-throughput sequencing, we show that Antarctica shares significantly more fungi with the Arctic, and more fungi display a bipolar distribution, than would be expected in the absence of environmental filtering. In contrast to temperate and tropical regions, there is relatively little endemism, and a strongly bimodal distribution of range sizes. Increasing southerly latitude is associated with lower endemism and communities increasingly dominated by fungi with widespread ranges. These results suggest that micro-organisms with well-developed dispersal capabilities can inhabit opposite poles of the Earth, and dominate extreme environments over specialised local species.


Asunto(s)
Ecosistema , Hongos/fisiología , Microbiología del Suelo , Regiones Antárticas , Regiones Árticas , Demografía , Hongos/clasificación , Hongos/genética
9.
Nat Commun ; 15(1): 377, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191568

RESUMEN

Increasing soil organic carbon (SOC) in croplands by switching from conventional to conservation management may be hampered by stimulated microbial decomposition under warming. Here, we test the interactive effects of agricultural management and warming on SOC persistence and underlying microbial mechanisms in a decade-long controlled experiment on a wheat-maize cropping system. Warming increased SOC content and accelerated fungal community temporal turnover under conservation agriculture (no tillage, chopped crop residue), but not under conventional agriculture (annual tillage, crop residue removed). Microbial carbon use efficiency (CUE) and growth increased linearly over time, with stronger positive warming effects after 5 years under conservation agriculture. According to structural equation models, these increases arose from greater carbon inputs from the crops, which indirectly controlled microbial CUE via changes in fungal communities. As a result, fungal necromass increased from 28 to 53%, emerging as the strongest predictor of SOC content. Collectively, our results demonstrate how management and climatic factors can interact to alter microbial community composition, physiology and functions and, in turn, SOC formation and accrual in croplands.


Asunto(s)
Microbiota , Suelo , Carbono , Agricultura , Productos Agrícolas
10.
Proc Natl Acad Sci U S A ; 107(35): 15508-11, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20660748

RESUMEN

Today, insular Southeast Asia is important for both its remarkably rich biodiversity and globally significant roles in atmospheric and oceanic circulation. Despite the fundamental importance of environmental history for diversity and conservation, there is little primary evidence concerning the nature of vegetation in north equatorial Southeast Asia during the Last Glacial Period (LGP). As a result, even the general distribution of vegetation during the Last Glacial Maximum is debated. Here we show, using the stable carbon isotope composition of ancient cave guano profiles, that there was a substantial forest contraction during the LGP on both peninsular Malaysia and Palawan, while rainforest was maintained in northern Borneo. These results directly support rainforest "refugia" hypotheses and provide evidence that environmental barriers likely reduced genetic mixing between Borneo and Sumatra flora and fauna. Moreover, it sheds light on possible early human dispersal events.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Árboles/crecimiento & desarrollo , Alcanos/metabolismo , Animales , Borneo , Isótopos de Carbono/metabolismo , Clima , Geografía , Actividades Humanas , Humanos , Cubierta de Hielo , Indonesia , Insectos/fisiología , Malasia , Océanos y Mares , Dinámica Poblacional , Factores de Tiempo , Árboles/metabolismo , Árboles/parasitología
11.
Rapid Commun Mass Spectrom ; 26(20): 2386-92, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22976204

RESUMEN

RATIONALE: Globally, many drylands are experiencing the encroachment of woody vegetation into grasslands. These changes in ecosystem structure and processes can result in increased sediment and nutrient fluxes due to fluvial erosion. As these changes are often accompanied by a shift from C(4) to C(3) vegetation with characteristic δ(13) C values, stable isotope analysis provides a promising mechanism for tracing these fluxes. METHODS: Input vegetation, surface sediment and fluvially eroded sediment samples were collected across two contrasting C(4) -C(3) dryland vegetation transitions in New Mexico, USA. Isotope ratio mass spectrometric analyses were performed using a Carlo Erba NA2000 analyser interfaced to a SerCon 20-22 isotope ratio mass spectrometer to determine bulk δ(13) C values. RESULTS: Stable isotope analyses of contemporary input vegetation and surface sediments over the monitored transitions showed significant differences (p <0.05) in the bulk δ(13) C values of C(4) Bouteloua sp. (grama) grassland, C(3) Larrea tridentata (creosote) shrubland and C(3) Pinus edulis/Juniperus monosperma (piñon-juniper) woodland sites. Significantly, this distinctive δ(13) C value was maintained in the bulk δ(13) C values of fluvially eroded sediment from each of the sites, with no significant variation between surface sediment and eroded sediment values. CONCLUSIONS: The significant differences in bulk δ(13) C values between sites were dependent on vegetation input. Importantly, these values were robustly expressed in fluvially eroded sediments, suggesting that stable isotope analysis is suitable for tracing sediment fluxes. Due to the prevalent nature of these dryland vegetation transitions in the USA and globally, further development of stable isotope ratio mass spectrometry has provided a valuable tool for enhanced understanding of functional changes in these ecosystems.


Asunto(s)
Carbono/análisis , Sedimentos Geológicos/análisis , Juniperus/metabolismo , Larrea/metabolismo , Pinus/metabolismo , Poaceae/metabolismo , Isótopos de Carbono/análisis , Ecosistema , Espectrometría de Masas , New Mexico
12.
Front Public Health ; 10: 858615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35425734

RESUMEN

Viruses act as "regulators" of the global carbon cycle because they impact the material cycles and energy flows of food webs and the microbial loop. The average contribution of viruses to the Earth ecosystem carbon cycle is 8.6‰, of which its contribution to marine ecosystems (1.4‰) is less than its contribution to terrestrial (6.7‰) and freshwater (17.8‰) ecosystems. Over the past 2,000 years, anthropogenic activities and climate change have gradually altered the regulatory role of viruses in ecosystem carbon cycling processes. This has been particularly conspicuous over the past 200 years due to rapid industrialization and attendant population growth. The progressive acceleration of the spread and reproduction of viruses may subsequently accelerate the global C cycle.


Asunto(s)
Ecosistema , Virus , Carbono , Ciclo del Carbono , Cambio Climático
13.
Plant Soil ; 480(1-2): 369-389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466744

RESUMEN

Purpose: Nitrogen (N) transfer from white clover (Trifolium repens cv.) to ryegrass (Lolium perenne cv.) has the potential to meet ryegrass N requirements. This study aimed to quantify N transfer in a mixed pasture and investigate the influence of the microbial community and land management on N transfer. Methods: Split root 15N-labelling of clover quantified N transfer to ryegrass via exudation, microbial assimilation, decomposition, defoliation and soil biota. Incorporation into the microbial protein pool was determined using compound-specific 15N-stable isotope probing approaches. Results: N transfer to ryegrass and soil microbial protein in the model system was relatively small, with one-third arising from root exudation. N transfer to ryegrass increased with no microbial competition but soil microbes also increased N transfer via shoot decomposition. Addition of mycorrhizal fungi did not alter N transfer, due to the source-sink nature of this pathway, whilst weevil grazing on roots decreased microbial N transfer. N transfer was bidirectional, and comparable on a short-term scale. Conclusions: N transfer was low in a model young pasture established from soil from a permanent grassland with long-term N fertilisation. Root exudation and decomposition were major N transfer pathways. N transfer was influenced by soil biota (weevils, mycorrhizae) and land management (e.g. grazing). Previous land management and the role of the microbial community in N transfer must be considered when determining the potential for N transfer to ryegrass. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05585-0.

14.
Sci Total Environ ; 761: 143945, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33360125

RESUMEN

Carbon sequestration is a key soil function, and an increase in soil organic carbon (SOC) is an indicator of ecosystem recovery because it underpins other ecosystem services by acting as a substrate for the soil microbial community. The soil microbial community constitutes the active pool of SOC, and its necromass (microbial residue carbon, MRC) contributes strongly to the stable SOC pool. Therefore, we propose that the potential for restoration of degraded karst ecosystems lies in the abundance of soil microbial community and the persistence of its necromass, and may be measured by changes in its contribution to the active and stable SOC pools during recovery. We investigated changes in SOC stocks using an established space-for-time chronosequence along a perturbation gradient in the subtropical karst ecosystem: sloping cropland < abandoned cropland < shrubland < secondary forest < primary forest. Microbial biomarkers were extracted from soil profiles from surface to bedrock and used to measure the contributions of the soil microbial community composition (using phospholipid fatty acids, PLFAs) and MRC (using amino sugars) to SOC stocks at each recovery stage. The results showed that the SOC stocks ranged from 10.53 to 31.77 kg m-2 and increased with recovery stage, with total MRC accounting for 17-28% of SOC. Increasing PLFAs and MRC abundances were positively correlated with improved soil structure (decreased bulk density) and organic carbon, nitrogen and phosphorus nutrient. Bacterial MRC contributes more to SOC stocks than fungal residue carbon during vegetation recovery. The PLFA analysis indicated that Gram positive bacteria were the largest microbial group and were relatively more abundant in deeper soils, and biomarkers for saprophytic and ectomycorrhizal fungi were more abundant in soils under woody vegetation. In conclusion, this study suggests that the soil microbial community in karst soils have the potential to adapt to changing soil conditions and contribute substantially to building SOC stocks after abandonment of agriculture in degraded karst landscapes.


Asunto(s)
Ecosistema , Suelo , Carbono/análisis , China , Bosques , Nitrógeno/análisis , Microbiología del Suelo
15.
Rapid Commun Mass Spectrom ; 24(5): 495-500, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20112271

RESUMEN

Understanding the fate of dung carbon (C) in soils is challenging due to the ubiquitous presence of the plant-derived organic matter (OM), the source material from which both dung-derived OM and soil organic matter (SOM) predominantly originate. A better understanding of the fate of specific components of this substantial source of OM, and thereby its contribution to C cycling in terrestrial ecosystems, can only be achieved through the use of labelled dung treatments. In this short review, we consider analytical approaches using bulk and compound-specific stable carbon isotope analysis that have been utilised to explore the fate of dung-derived C in soils. Bulk stable carbon isotope analyses are now used routinely to explore OM matter cycling in soils, and have shown that up to 20% of applied dung C may be incorporated into the surface soil horizons several weeks after application, with up to 8% remaining in the soil profile after one year. However, whole soil delta(13)C values represent the average of a wide range of organic components with varying delta(13)C values and mean residence times in soils. Several stable (13)C isotope ratio mass spectrometric methods have been developed to qualify and quantify different fractions of OM in soils and other complex matrices. In particular, thermogravimetry-differential scanning calorimetry-isotope ratio mass spectrometry (TG-DSC-IRMS) and gas chromatography-combustion-IRMS (GC-C-IRMS) analyses have been applied to determine the incorporation and turnover of polymeric plant cell wall materials from C(4) dung into C(3) grassland soils using natural abundance (13)C isotope labelling. Both approaches showed that fluxes of C derived from polysaccharides, i.e. as cellulose or monosaccharide components, were more similar to the behaviour of bulk dung C in soil than lignin. However, lignin and its 4-hydroxypropanoid monomers were unexpectedly dynamic in soil. These findings provide further evidence for emerging themes in biogeochemical investigations of soil OM dynamics that challenge perceived concepts of recalcitrance of C pools in soils, which may have profound implications for the assessment of the potential of agricultural soils to influence terrestrial C sinks.


Asunto(s)
Isótopos de Carbono/análisis , Carbono/análisis , Marcaje Isotópico/métodos , Estiércol/análisis , Espectrometría de Masas/métodos , Animales , Rastreo Diferencial de Calorimetría , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Bovinos , Pared Celular/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Lignina/química , Lignina/metabolismo , Plantas , Polisacáridos/química , Polisacáridos/metabolismo , Termogravimetría
16.
Sci Total Environ ; 748: 142381, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33113676

RESUMEN

Extensive, progressive rock emergence causes localized variations in soil biogeochemical and microbial properties that may influence the capacity for the regeneration of degraded karst ecosystems. It is likely that karst ecosystem recovery relies on the persistence of soil functions at the microbial scale, and we aimed to explored the role of interactions between soil bacterial taxa and identify keystone species that deliver key biogeochemical functions, i.e. carbon (C) and nutrient (nitrogen, N and phosphorus, P) cycling. We applied high-throughput sequencing and phylogenetic molecular ecological network approaches to topsoils sampled at rock-soil interfaces and adjacent bulk soil along an established gradient of land-use intensity in the Chinese Karst Critical Zone Observatory. Bacterial α-diversity was greater under increased perturbation and at the rock-soil interface compared to bulk soils under intensive cultivation. However, bacterial ecological networks were less intricate and connected fewer keystone taxa as human disturbance increased and at the rock-soil interface. Co-occurrence within the bacterial community in natural primary forest soils was 13% larger than cultivated soils. The relative abundances of keystone taxa Acidobacteria, Bacteroidetes and Chloroflexi increased with land-use intensity, while Proteobacteria, Actinobacteria and Verrucomicrobia decreased by up to 6%. In general, Bacteroidetes, Verrucomicrobia and Chlorobi were related to C-cycling, Proteobacteria, Actinobacteria and Chloroflexi were related to N-cycling, and Actinobacteria and Nitrospirae were related to both N- and P-cycling. Proteobacteria and Chlorobi affected C-cycling and multiple functionality indexes in the abandoned land. We conclude that increasing land-use intensity changed the soil bacterial community structure and decreased bacterial interactions. However, increases in α-diversity at the rock-soil interface in cultivated soils indicated that major soil functions related to biogeochemical cycling were maintained within keystone taxa in this microenvironment. Our study provides foundations to test the success of different regeneration practices in restoring soil microbial diversity and the multifunctionality of karst ecosystems.


Asunto(s)
Ecosistema , Suelo , Bacterias/genética , Filogenia , Microbiología del Suelo
17.
PeerJ ; 8: e8631, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32368415

RESUMEN

BACKGROUND: Promoting and maintaining health is critical to ruminant welfare and productivity. Within human medicine, faecal lactoferrin is quantified for routine assessment of various gastrointestinal illnesses avoiding the need for blood sampling. This approach might also be adapted and applied for non-invasive health assessments in animals. METHODS: In this proof-of-concept study, a bovine lactoferrin enzyme-linked immunosorbent assays (ELISA), designed for serum and milk, was applied to a faecal supernatant to assess its potential for quantifying lactoferrin in the faeces of cattle. Faecal lactoferrin concentrations were compared to background levels to assess the viability of the technique. A comparison was then made against serum lactoferrin levels to determine if they were or were not reflective of one another. RESULTS: The optical densities of faecal samples were significantly greater than background readings, supporting the hypothesis that the assay was effective in quantifying faecal lactoferrin (T 13, 115 = 11.99, p < 0.0005). The mean faecal lactoferrin concentration was 0.269 µg mL-1 (S.E. 0.031) and the mean serum concentration 0.074 µg mL-1 (S.E. 0.005). Lactoferrin concentrations of faecal and serum samples, taken from the same animals on the same day, were significantly different (T 21 = 2.20, p = 0.039) and did not correlate (r = 0.2699, p = 0.238). CONCLUSION: Results support the hypothesis that lactoferrin can be quantified in cattle faeces by ELISA. Whilst further research is required to determine the physiological source of the lactoferrin, this highlights the potential of the method for non-invasive assessment of cattle immunology and pathology.

18.
Front Microbiol ; 11: 615608, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391247

RESUMEN

We report a previously undescribed member of the Helotiales that is superabundant in soils at two maritime Antarctic islands under Antarctic Hairgrass (Deschampsia antarctica Desv.). High throughput sequencing showed that up to 92% of DNA reads, and 68% of RNA reads, in soils from the islands were accounted for by the fungus. Sequencing of the large subunit region of ribosomal (r)DNA places the fungus close to the Pezizellaceae, Porodiplodiaceae, and Sclerotiniaceae, with analyses of internal transcribed spacer regions of rDNA indicating that it has affinities to previously unnamed soil and root fungi from alpine, cool temperate and Low Arctic regions. The fungus was found to be most frequent in soils containing C aged to 1,000-1,200 years before present. The relative abundances of its DNA and RNA reads were positively associated with soil carbon and nitrogen concentrations and δ13C values, with the relative abundance of its DNA being negatively associated with soil pH value. An isolate of the fungus produces flask-shaped phialides with a pronounced venter bearing masses of conidia measuring 4.5-6(7) × 1.8-2.5 µm, suggestive of anamorphic Chalara. Enzymatic studies indicate that the isolate strongly synthesizes the extracellular enzyme acid phosphatase, and also exhibits alkaline phosphatase and naphthol-AS-BI-phosphohydrolase activities. Ecophysiological measurements indicate optimal hyphal growth of the isolate at a pH of 4.2-4.5 and a water potential of -0.66 MPa. The isolate is a psychrotroph, exhibiting measureable hyphal growth at -2°C, optimal hyphal extension rate at 15°C and negligible growth at 25°C. It is proposed that the rising temperatures that are predicted to occur in maritime Antarctica later this century will increase the growth rate of the fungus, with the potential loss of ancient C from soils. Analyses using the GlobalFungi Database indicate that the fungus is present in cold, acidic soils on all continents. We advocate further studies to identify whether it is superabundant in soils under D. antarctica elsewhere in maritime Antarctica, and for further isolates to be obtained so that the species can be formally described.

19.
Phytochemistry ; 69(10): 2041-51, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18539304

RESUMEN

The leaves of 37 grass, herb, shrub and tree species were collected from a mesotrophic grassland to assess natural variability in bulk, fatty acid and monosaccharide delta(13)C values of leaves from one plant community. The leaf tissue mean bulk delta(13)C value was -29.3 per thousand. No significant differences between tissue bulk delta(13)C values with life form were determined (P=0.40). On average, C(16:0), C(18:2) and C(18:3) constituted 89% of leaf tissue total fatty acids, whose delta(13)C values were depleted compared to whole leaf tissues. A general interspecific (between different species) trend for fatty acids delta(13)C values was observed, i.e. delta(13)C(16:0)delta(13)C(xylose)>delta(13)C(glucose)>delta(13)C(galactose), was consistently observed. Therefore, we have shown (i) diversity in compound-specific delta(13)C values contributing to leaf bulk delta(13)C values; (ii) interspecific variability between bulk and compound-specific delta(13)C values of leaves of individual grassland species, and (iii) trends between individual fatty acid and monosaccharide delta(13)C values common to leaves of all species within one plant community.


Asunto(s)
Monosacáridos/química , Monosacáridos/metabolismo , Poaceae/química , Poaceae/metabolismo , Isótopos de Carbono , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Estructura Molecular , Hojas de la Planta/química , Hojas de la Planta/metabolismo
20.
Environ Sci Pollut Res Int ; 25(21): 20899-20910, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29766422

RESUMEN

In karst areas, rock dissolution often results in the development of underground networks, which act as subterranean pathways for rapid water and nutrient (and possibly soil) loss during precipitation events. Loss of soluble nutrients degrades surface soils and decreases net primary productivity, so it is important to establish flow pathways and quantify nutrient loss during rainfall events of different magnitudes. We conducted a simulated rainfall experiment in karst and nonkarst areas to compare the concentration of nutrients in surface and subsurface flow water and effects on soil alkalinity in three lithologic soil formations under five different rainfall intensity treatments. Compared with the nonkarst area, the runoff in subsurface flows and the proportion of nutrient loss in the subsurface flow are larger in the karst area and less affected by rain intensity. The maximum loss loads of calcium (Ca2+) and magnesium (Mg2+) ions were 32.9 and 19.8 kg ha-1, respectively. With the estimate of base cation loss loads in the China southern karst area under the rainfall intensity of 45 mm h-1, more than 80% of the base cation loss load occurred in the limestone karst area. Although the alkalinity leaching value in nonkarst was similar to that in the karst area under simulated rainfall conditions, its impact on the ecological environment was quite different.


Asunto(s)
Agua Dulce/química , Sedimentos Geológicos/química , Agua Subterránea/química , Lluvia , Suelo/química , Movimientos del Agua , Calcio/análisis , Cationes/análisis , China , Clima , Magnesio/análisis , Modelos Teóricos , Potasio/análisis , Sodio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA