Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(5): 555-566, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32327756

RESUMEN

Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancerous tissue and block immune cell effector functions. The lack of mechanistic insight into MDSC suppressive activity and a marker for their identification has hampered attempts to overcome T cell inhibition and unleash anti-cancer immunity. Here, we report that human MDSCs were characterized by strongly reduced metabolism and conferred this compromised metabolic state to CD8+ T cells, thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase, to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8+ T cells. In a murine cancer model, neutralization of dicarbonyl activity overcame MDSC-mediated T cell suppression and, together with checkpoint inhibition, improved the efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as a marker metabolite for MDSCs that mediates T cell paralysis and can serve as a target to improve cancer immune therapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Células Supresoras de Origen Mieloide/inmunología , Piruvaldehído/metabolismo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Animales , Linfocitos T CD8-positivos/trasplante , Comunicación Celular , Proliferación Celular , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Melanoma Experimental , Ratones , Ratones Transgénicos , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1/metabolismo
2.
Nature ; 579(7799): 409-414, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188942

RESUMEN

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


Asunto(s)
Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Arabidopsis/química , Espectrometría de Masas , Proteoma/análisis , Proteoma/química , Proteómica , Secuencias de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Especificidad de Órganos , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Proteoma/biosíntesis , Proteoma/genética , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma
3.
J Chem Inf Model ; 63(7): 2014-2029, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36696962

RESUMEN

With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.


Asunto(s)
Receptores Odorantes , Humanos , Receptores Odorantes/genética , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Odorantes , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Proteínas de Unión al GTP/metabolismo , Ligandos
4.
J Chem Inf Model ; 62(3): 511-522, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35113559

RESUMEN

The extracellular loop 2 (ECL2) is the longest and the most diverse loop among class A G protein-coupled receptors (GPCRs). It connects the transmembrane (TM) helices 4 and 5 and contains a highly conserved cysteine through which it is bridged with TM3. In this paper, experimental ECL2 structures were analyzed based on their sequences, shapes, and intramolecular contacts. To take into account the flexibility, we incorporated into our analyses information from the molecular dynamics trajectories available on the GPCRmd website. Despite the high sequence variability, shapes of the analyzed structures, defined by the backbone volume overlaps, can be clustered into seven main groups. Conformational differences within the clusters can be then identified by intramolecular interactions with other GPCR structural domains. Overall, our work provides a reorganization of the structural information of the ECL2 of class A GPCR subfamilies, highlighting differences and similarities on sequence and conformation levels.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/química
5.
Anal Chem ; 93(37): 12565-12573, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34491041

RESUMEN

In comparison to proteomics, the application of two-dimensional liquid chromatography (2D LC) in the field of metabolomics is still premature. One reason might be the elevated chemical complexity and the associated challenge of selecting proper separation conditions in each dimension. As orthogonality of dimensions is a major issue, the present study aimed for the identification of successful stationary phase combinations. To determine the degree of orthogonality, first, six different metrics, namely, Pearson's correlation coefficient (1 - |R|), the nearest-neighbor distances (H̅NND), the "asterisk equations" (AO), and surface coverage by bins (SCG), convex hulls (SCCH), and α-convex hulls (SCαH), were critically assessed by 15 artificial 2D data sets, and a systematic parameter optimization of α-convex hulls was conducted. SGG, SCαH with α = 0.1, and H̅NND generated valid results with sensitivity toward space utilization and data distribution and, therefore, were applied to pairs of experimental retention time sets obtained for >350 metabolites, selected to represent the chemical space of human urine. Normalized retention data were obtained for 23 chromatographic setups, comprising reversed-phase (RP), hydrophilic interaction liquid chromatography (HILIC), and mixed-mode separation systems with an ion exchange (IEX) contribution. As expected, no single LC setting provided separation of all considered analytes, but while conventional RP×HILIC combinations appeared rather complementary than orthogonal, the incorporation of IEX properties into the RP dimension substantially increased the 2D potential. Eventually, one of the most promising column combinations was implemented for an offline 2D LC time-of-flight mass spectrometry analysis of a lyophilized urine sample. Targeted screening resulted in a total of 164 detected metabolites and confirmed the outstanding coverage of the 2D retention space.


Asunto(s)
Cromatografía de Fase Inversa , Metabolómica , Cromatografía Liquida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas
6.
Int J Syst Evol Microbiol ; 70(4): 2186-2193, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32043954

RESUMEN

Eight facultatively anaerobic rod-shaped bacteria were isolated from raw milk and two other dairy products. Results of phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates are placed in a distinct lineage within the family Propionibacteriaceae with Propioniciclava sinopodophylli and Propioniciclava tarda as the closest relatives (94.6 and 93.5 % similarity, respectively). The cell-wall peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid and was of the A1γ type (meso-DAP-direct). The major cellular fatty acid was anteiso-C15 : 0 and the major polar lipids were diphosphatidylglycerol, phosphatidyglycerol and three unidentified glycolipids. The quinone system contained predominantly menaquinone MK-9(H4). The G+C content of the genomic DNA of strain VG341T was 67.7 mol%. The whole-cell sugar pattern contained ribose, rhamnose, arabinose and galactose. On the basis of phenotypic and genetic data, eight strains (VG341T, WS4684, WS4769, WS 4882, WS4883, WS4901, WS4902 and WS4904) are proposed to be classified as members of a novel species in a new genus of the family Propionibacteriaceae, for which the name Brevilactibacter flavus gen. nov., sp. nov. is proposed. The type strain is VG341T (=WS4900T=DSM 100885T=LMG 29089T) and seven additional strains are WS4684, WS4769, WS4882, WS4883, WS4901, WS4902 and WS4904. Furthermore, we propose the reclassification of P. sinopodophylli as Brevilactibacter sinopodophylli comb. nov.


Asunto(s)
Productos Lácteos/microbiología , Leche/microbiología , Filogenia , Propionibacteriaceae/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Microbiología de Alimentos , Alemania , Glucolípidos/química , Peptidoglicano/química , Fosfolípidos/química , Propionibacteriaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
J Lipid Res ; 55(5): 870-82, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24688103

RESUMEN

Taste perception elicited by food constituents and facilitated by sensory cells in the oral cavity is important for the survival of organisms. In addition to the five basic taste modalities, sweet, umami, bitter, sour, and salty, orosensory perception of stimuli such as fat constituents is intensely investigated. Experiments in rodents and humans suggest that free fatty acids represent a major stimulus for the perception of fat-containing food. However, the lipid fraction of foods mainly consists of triglycerides in which fatty acids are esterified with glycerol. Whereas effective lipolysis by secreted lipases (LIPs) liberating fatty acids from triglycerides in the rodent oral cavity is well established, a similar mechanism in humans is disputed. By psychophysical analyses of humans, we demonstrate responses upon stimulation with triglycerides which are attenuated by concomitant LIP inhibitor administration. Moreover, lipolytic activities detected in minor salivary gland secretions directly supplying gustatory papillae were correlated to individual sensitivities for triglycerides, suggesting that differential LIP levels may contribute to variant fat perception. Intriguingly, we found that the LIPF gene coding for lingual/gastric LIP is not expressed in human lingual tissue. Instead, we identified the expression of other LIPs, which may compensate for the absence of LIPF.


Asunto(s)
Grasas de la Dieta/farmacología , Lipólisis , Percepción del Gusto/efectos de los fármacos , Adulto , Esterificación , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Lactonas/farmacología , Lipasa/genética , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Masculino , Ácido Oléico/química , Ácido Oléico/farmacología , Orlistat , Saliva/efectos de los fármacos , Saliva/metabolismo , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/metabolismo , Glándulas Salivales/fisiología , Trioleína/química , Trioleína/farmacología
8.
Angew Chem Int Ed Engl ; 53(28): 7124-43, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24939725

RESUMEN

The biocatalytic production of flavor naturals that determine chemosensory percepts of foods and beverages is an ever challenging target for academic and industrial research. Advances in chemical trace analysis and post-genomic progress at the chemistry-biology interface revealed odor qualities of nature's chemosensory entities to be defined by odorant-induced olfactory receptor activity patterns. Beyond traditional views, this review and meta-analysis now shows characteristic ratios of only about 3 to 40 genuine key odorants for each food, from a group of about 230 out of circa 10 000 food volatiles. This suggests the foodborn stimulus space has co-evolved with, and roughly match our circa 400 olfactory receptors as best natural agonists. This perspective gives insight into nature's chemical signatures of smell, provides the chemical odor codes of more than 220 food samples, and beyond addresses industrial implications for producing recombinants that fully reconstruct the natural odor signatures for use in flavors and fragrances, fully immersive interactive virtual environments, or humanoid bioelectronic noses.


Asunto(s)
Biotecnología/tendencias , Alimentos , Olfato/fisiología , Humanos , Filogenia , Receptores Odorantes/genética
9.
J Agric Food Chem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010731

RESUMEN

A sensitive high-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-MS/MSMRM) method, leveraging both technique and internal calibration, was developed for the simultaneous and comprehensive quantitative analysis of 46 antioxidants and antioxidant precursors in different beer types without any cleanup procedure. Combined with their in vitro antioxidant activity, a dose-activity estimation exposed a group of 10 key antioxidants, namely, tryptophan, tyrosine, hordatine A, hordatine B, procyanidin B3, prodelphinidin B3, tachioside (3-methoxy-4-hydroxyphenyl-ß-d-glucopyranoside), (+)-catechin, tyrosol, and ferulic acid. To study the effect of antioxidants in spiking and aging studies, another liquid chromatography-MS (LC-MS)-based method was developed, monitoring markers for oxidation in beer. A positive effect of the antioxidants on the flavor stability at naturally relevant concentrations was shown by a slowing of oxygen-dependent aging reactions highlighted in beer storage trials under oxygen atmosphere. Thereby, a doubling of the natural concentration of all investigated antioxidants in beer revealed a limit inhibition of 67% on the degradation of cis-isocohumulone to hydroxy-cis-alloisocohumulone.

10.
Stem Cell Reports ; 19(3): 343-350, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38402620

RESUMEN

Quality control of human induced pluripotent stem cells (iPSCs) is critical to ensure reproducibility of research. Recently, KOLF2.1J was characterized and published as a male iPSC reference line to study neurological disorders. Emerging evidence suggests potential negative effects of mtDNA mutations, but its integrity was not analyzed in the original publication. To assess mtDNA integrity, we conducted a targeted mtDNA analysis followed by untargeted metabolomics analysis. We found that KOLF2.1J mtDNA integrity was intact at the time of publication and is still preserved in the commercially distributed cell line. In addition, the basal KOLF2.1J metabolome profile was similar to that of the two commercially available iPSC lines IMR90 and iPSC12, but clearly distinct from an in-house-generated ERCC6R683X/R683X iPSC line modeling Cockayne syndrome. Conclusively, we validate KOLF2.1J as a reference iPSC line, and encourage scientists to conduct mtDNA analysis and unbiased metabolomics whenever feasible.


Asunto(s)
ADN Mitocondrial , Células Madre Pluripotentes Inducidas , Humanos , Masculino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Reproducibilidad de los Resultados , Mitocondrias/metabolismo , Metaboloma
11.
J Agric Food Chem ; 72(28): 15890-15905, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953212

RESUMEN

Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.


Asunto(s)
Fermentación , Aromatizantes , Proteínas de Guisantes , Pisum sativum , Gusto , Humanos , Proteínas de Guisantes/metabolismo , Proteínas de Guisantes/química , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiología , Aromatizantes/metabolismo , Aromatizantes/química , Femenino , Masculino , Adulto , Bebidas/análisis , Bebidas/microbiología
12.
Sci Rep ; 14(1): 15408, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965271

RESUMEN

Chemosensory impairment is an outstanding symptom of SARS-CoV-2 infections. We hypothesized that measured sensory impairments are accompanied by transcriptomic changes in the foliate papillae area of the tongue. Hospital personnel with known SARS-CoV-2 immunoglobulin G (IgG) status completed questionnaires on sensory perception (n = 158). A subcohort of n = 141 participated in forced choice taste tests, and n = 43 participants consented to donate tongue swabs of the foliate papillae area for whole transcriptome analysis. The study included four groups of participants differing in IgG levels (≥ 10 AU/mL = IgG+; < 10 AU/mL = IgG-) and self-reported sensory impairment (SSI±). IgG+ subjects not detecting metallic taste had higher IgG+ levels than IgG+ participants detecting iron gluconate (p = 0.03). Smell perception was the most impaired biological process in the transcriptome data from IgG+/SSI+ participants subjected to gene ontology enrichment. IgG+/SSI+ subjects demonstrated lower expression levels of 166 olfactory receptors (OR) and 9 taste associated receptors (TAS) of which OR1A2, OR2J2, OR1A1, OR5K1 and OR1G1, as well as TAS2R7 are linked to metallic perception. The question raised by this study is whether odorant receptors on the tongue (i) might play a role in metal sensation, and (ii) are potential targets for virus-initiated sensory impairments, which needs to be investigated in future functional studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Lengua , Transcriptoma , Humanos , COVID-19/virología , COVID-19/genética , COVID-19/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Lengua/metabolismo , Lengua/virología , Lengua/patología , Inmunoglobulina G , Metales/metabolismo , Papilas Gustativas/metabolismo , Percepción del Gusto/genética , Gusto , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Percepción Olfatoria
13.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915718

RESUMEN

Background: The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results: Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion: We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.

14.
Anal Bioanal Chem ; 405(26): 8487-503, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23982107

RESUMEN

Habitual consumption of medium amounts of coffee over the whole life-span is hypothesized to reduce the risk to develop diabetes type 2 (DM2) and Alzheimer's disease (AD). To identify putative bioactive coffee-derived metabolites, first, pooled urine from coffee drinkers and non-coffee drinkers were screened by UPLC-HDMS. After statistical data analysis, trigonelline, dimethylxanthines and monomethylxanthines, and ferulic acid conjugates were identified as the major metabolites found after coffee consumption. For quantitative analysis of these markers in body fluids, targeted methods based on stable-isotope dilution and UPLC-MS/MS were developed and applied to plasma samples from a coffee intervention study (n = 13 volunteers) who consumed a single cup of caffeinated coffee brew after a 10-day washout period. Chlorogenic acid-derived metabolites were found to be separated into two groups showing different pharmacokinetic properties. The first group comprised, e.g., ferulic acid and feruloyl sulfate and showed early appearance in the plasma (~1 h). The second group contained particularly chlorogenic acid metabolites formed by the intestinal microflora, appearing late and persisting in the plasma (>6 h). Trigonelline appeared early but persisted with calculated half-life times ~5 h. The plasma levels of caffeine metabolites significantly and progressively increased 2-4 h after coffee consumption and did not reach c max within the time frame of the study. The pharmacokinetic profiles suggest that particularly trigonelline, caffeine, its metabolites, as well as late appearing dihydroferulic acid, feruloylglycine and dihydroferulic acid sulfate formed from chlorogenic acid by the intestinal microflora accumulate in the plasma due to their long half-life times during habitual consumption of several cups of coffee distributed over the day. Since some of these metabolites have been reported to show antioxidant effects in vivo, antioxidant-response-element activating potential, and neuroprotective properties, respectively, some of these key metabolites might account for the inflammation- and DM2/AD risk reducing effects reported for habitual life time consumption of coffee.


Asunto(s)
Alcaloides/metabolismo , Cafeína/metabolismo , Ácido Clorogénico/metabolismo , Café/metabolismo , Ácidos Cumáricos/metabolismo , Xantinas/metabolismo , Adulto , Alcaloides/sangre , Alcaloides/orina , Cafeína/sangre , Cafeína/orina , Ácido Clorogénico/sangre , Ácido Clorogénico/orina , Ácidos Cumáricos/sangre , Ácidos Cumáricos/orina , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem , Xantinas/sangre , Xantinas/orina , Adulto Joven
15.
J Agric Food Chem ; 71(22): 8633-8647, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232935

RESUMEN

Amino acids and acylcarnitines are important biomarkers of the body's energy state and can be used as diagnostic markers of certain inborn errors of metabolism. Few multianalyte methods for high-throughput analysis in serum exist for these compounds, but micromethods suitable for use in young children and infants are lacking. Therefore, we developed a quantitative high-throughput multianalyte hydrophilic interaction liquid chromatography-tandem mass spectrometry method preceded by a derivatization-free sample preparation using minimum amounts of serum (25 µL). Isotopically labeled standards were utilized for quantification. Forty amino acids and amino acid derivatives and 22 acylcarnitines were detected by applying a multiple reaction monitoring mode within a 20 min run. The method was comprehensively validated, comprising linearity, accuracy, (intraday/interday) precision, and quantitation limits, of which the latter ranged from 0.25 to 50 nM for acylcarnitines and from 0.005 to 1 µM for amino acids and their derivatives. Application of the method to 145 serum samples of three- to four-month-old healthy infants showed excellent reproducibility for multiday analyses and enabled simultaneous amino acid and acylcarnitine profiling in this age group.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Niño , Lactante , Humanos , Preescolar , Aminoácidos/metabolismo , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Carnitina
16.
J Agric Food Chem ; 71(22): 8622-8632, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37228041

RESUMEN

Recent studies show the immense capacities of the unified quantitation of aroma and taste compounds using liquid chromatography-mass spectrometry (LC-MS). The goal of this study was to highlight the broad application of this unified method. Thus, a stable isotope dilution analysis quantification method of the most important key food odorants in various food categories by LC-MS was developed. Using the well-known derivatization agent 3-nitrophenylhydrazine for carbonyl derivatization and a newly developed approach for alcohol and thiol derivatization, a method for the quantitation of 20 key food odorants was established. Intraday precision was determined to be ≤26%, and interday precision was between 24 and 31%. Limits of quantitation were determined between 0.014 and 283 µg/kg. The work shows that a wide array of aroma compounds can be analyzed accurately by LC-MS.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Compuestos Orgánicos Volátiles/química
17.
J Agric Food Chem ; 71(13): 5314-5325, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943188

RESUMEN

Human gingival fibroblast cells (HGF-1 cells) present an important cell model to investigate the gingiva's response to inflammatory stimuli such as lipopolysaccharides from Porphyromonas gingivalis (Pg-LPS). Recently, we demonstrated trans-resveratrol to repress the Pg-LPS evoked release of the pro-inflammatory cytokine interleukin-6 (IL-6) via involvement of bitter taste sensing receptor TAS2R50 in HGF-1 cells. Since HGF-1 cells express most of the known 25 TAS2Rs, we hypothesized an association between a compound's bitter taste threshold and its repressing effect on the Pg-LPS evoked IL-6 release by HGF-1 cells. To verify our hypothesis, 11 compounds were selected from the chemical bitter space and subjected to the HGF-1 cell assay, spanning a concentration range between 0.1 µM and 50 mM. In the first set of experiments, the specific role of TAS2R50 was excluded by results from structurally diverse TAS2R agonists and antagonists and by means of a molecular docking approach. In the second set of experiments, the HGF-1 cell response was used to establish a linear association between a compound's effective concentration to repress the Pg-LPS evoked IL-6 release by 25% and its bitter taste threshold concentration published in the literature. The Pearson correlation coefficient revealed for this linear association was R2 = 0.60 (p < 0.01), exceeding respective data for the test compounds from a well-established native cell model, the HGT-1 cells, with R2 = 0.153 (p = 0.263). In conclusion, we provide a predictive model for bitter tasting compounds with a potential to act as anti-inflammatory substances.


Asunto(s)
Umbral Gustativo , Gusto , Humanos , Interleucina-6/genética , Interleucina-6/farmacología , Encía , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Porphyromonas gingivalis , Fibroblastos , Receptores Acoplados a Proteínas G/genética
18.
Nutrients ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904259

RESUMEN

BACKGROUND: Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS: We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS: Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS: Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.


Asunto(s)
Edulcorantes no Nutritivos , Edulcorantes , Humanos , Aditivos Alimentarios , Homeostasis , Neutrófilos , Espectrometría de Masas en Tándem
19.
Mol Metab ; 72: 101711, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958422

RESUMEN

PURPOSE: Heart diseases are the leading cause of death worldwide. Metabolic interventions via ketogenic diets (KDs) have been used for decades to treat epilepsy, and more recently, also diabetes and obesity, as common comorbidities of heart diseases. However, recent reports linked KDs, based on long-chain triglycerides (LCTs), to cardiac fibrosis and a reduction of heart function in rodents. As intervention using medium-chain triglycerides (MCTs) was recently shown to be beneficial in murine cardiac reperfusion injury, the question arises as to what extent the fatty acid (FA)-composition in a KD alters molecular markers of FA-oxidation (FAO) and modulates cardiac fibrotic outcome. METHODS: The effects of LCT-KD as well as an LCT/MCT mix (8:1 ketogenic ratio) on cardiac tissue integrity and the plasma metabolome were assessed in adult male C57/BL6NRJ mice after eight weeks on the respective diet. RESULTS: Both KDs resulted in increased amount of collagen fibers and cardiac tissue was immunologically indistinguishable between groups. MCT supplementation resulted in i) profound changes in plasma metabolome, ii) reduced hydroxymethylglutaryl-CoA synthase upregulation, and mitofusin 2 downregulation, iii) abrogation of LCT-induced mitochondrial enlargement, and iv) enhanced FAO profile. Contrary to literature, mitochondrial biogenesis was unaffected by KDs. We propose that the observed tissue remodeling is caused by the accumulation of 4-hydroxy-2-nonenal protein adducts, despite an inconspicuous nuclear factor (erythroid-derived 2)-like 2 pathway. CONCLUSION: We conclude that regardless of the generally favorable effects of MCTs, they cannot inhibit 4-hydroxy-2-nonenal adduct formation and fibrotic tissue formation in this setting. Furthermore, we support the burgeoning concern about the effect of KDs on the cardiac safety profile.


Asunto(s)
Dieta Cetogénica , Cardiopatías , Masculino , Ratones , Animales , Dieta Cetogénica/efectos adversos , Dieta Cetogénica/métodos , Triglicéridos/metabolismo , Ácidos Grasos , Fibrosis
20.
J Agric Food Chem ; 71(50): 20243-20250, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38084639

RESUMEN

Because food flavor is perceived through a combination of odor and taste, an analytical method that covers both dimensions would be very beneficial for mapping the consistent product quality over the entirety of a manufacturing process. Such a method, so-called "unified flavor quantitation", has been successfully applied to several different food products in recent years. The simultaneous detection of aroma and taste compounds by means of ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) enables the analysis and quantification of an enormously large number of compounds in a single run. To evaluate the limits of this method, chocolate, a high-fat, complex matrix, was selected. In 38 distinct commercial chocolate samples, 20 flavor-active acids, aldehydes, and sugars were analyzed after a simple, rapid extraction step followed by derivatization with 3-nitrophenylhydrazine using a single UHPLC-MS/MS method. The results obtained highlight the great potential of the "unified flavor quantitation" approach and demonstrate the possibility of high-throughput quantitation of key aroma- and taste-active molecules in a single assay.


Asunto(s)
Cacao , Chocolate , Chocolate/análisis , Espectrometría de Masas en Tándem , Cacao/química , Odorantes/análisis , Cromatografía Líquida de Alta Presión , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA