Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(11): 117401, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368631

RESUMEN

We introduce a nondestructive method to determine the position of randomly distributed semiconductor quantum dots (QDs) integrated in a solid photonic structure. By setting the structure in an oscillating motion, we generate a large stress gradient across the QDs plane. We then exploit the fact that the QDs emission frequency is highly sensitive to the local material stress to map the position of QDs deeply embedded in a photonic wire antenna with an accuracy ranging from ±35 nm down to ±1 nm. In the context of fast developing quantum technologies, this technique can be generalized to different photonic nanostructures embedding any stress-sensitive quantum emitters.

2.
Phys Rev Lett ; 112(1): 010502, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24483876

RESUMEN

A hybrid spin-oscillator system in parametric interaction is experimentally emulated using a single nitrogen vacancy (NV) spin qubit immersed in a radio frequency (rf) field and probed with a quasiresonant microwave (MW) field. We report on the MW-mediated locking of the NV spin dynamics onto the rf field, appearing when the MW-driven Rabi precession frequency approaches the rf frequency and for sufficiently large rf amplitudes. These signatures are analogous to a phononic Mollow triplet in the MW rotating frame for the parametric interaction and promise to have impact in spin-dependent force detection strategies.

3.
Phys Rev Lett ; 110(13): 136802, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581354

RESUMEN

We report on microwave-driven coherent electron transfer between two coupled donors embedded in a silicon nanowire. By increasing the microwave frequency we observe a transition from incoherent to coherent driving revealed by the emergence of a Landau-Zener-Stückelberg quantum interference pattern of the measured current through the donors. This interference pattern is fitted to extract characteristic parameters of the double-donor system. In particular we estimate a charge dephasing time of 0.3±0.1 ns, comparable to other types of charge-based two-level systems. The demonstrated coherent coupling between two dopants is an important step towards donor-based quantum computing devices in silicon.

4.
Phys Rev Lett ; 108(20): 206812, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-23003174

RESUMEN

We measure a large valley-orbit splitting for shallow isolated phosphorus donors in a silicon gated nanowire. This splitting is close to the bulk value and well above previous reports in silicon nanostructures. It was determined using a double dopant transport spectroscopy which eliminates artifacts induced by the environment. Quantitative simulations taking into account the position of the donors with respect to the Si/SiO2 interface and electric field in the wire show that the values found are consistent with the device geometry.

5.
J Phys Condens Matter ; 27(15): 154206, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25783566

RESUMEN

We describe the first implementation of a coupled atom transistor where two shallow donors (P or As) are implanted in a nanoscale silicon nanowire and their electronic levels are controlled with three gate voltages. Transport spectroscopy through these donors placed in series is performed both at zero and microwave frequencies. The coherence of the charge transfer between the two donors is probed by Landau-Zener-Stückelberg interferometry. Single-charge transfer at zero bias (electron pumping) has been performed and the crossover between the adiabatic and non-adiabatic regimes is studied.

6.
Nat Nanotechnol ; 9(11): 920-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25240676

RESUMEN

Optomechanics, which explores the fundamental coupling between light and mechanical motion, has made important advances in manipulating macroscopic mechanical oscillators down to the quantum level. However, dynamical effects related to the vectorial nature of the optomechanical interaction remain to be investigated. Here we study a nanowire with subwavelength dimensions coupled strongly to a tightly focused beam of light, enabling an ultrasensitive readout of the nanoresonator dynamics. We determine experimentally the vectorial structure of the optomechanical interaction and demonstrate that a bidimensional dynamical backaction governs the nanowire dynamics. Moreover, the spatial topology of the optomechanical interaction is responsible for novel canonical signatures of strong coupling between mechanical modes, which leads to a topological instability that underlies the non-conservative nature of the optomechanical interaction. These results have a universal character and illustrate the increased sensitivity of nanomechanical devices towards spatially varying interactions, opening fundamental perspectives in nanomechanics, optomechanics, ultrasensitive scanning force microscopy and nano-optics.

7.
Nat Nanotechnol ; 9(2): 106-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362234

RESUMEN

Recent progress in nanotechnology has allowed the fabrication of new hybrid systems in which a single two-level system is coupled to a mechanical nanoresonator. In such systems the quantum nature of a macroscopic degree of freedom can be revealed and manipulated. This opens up appealing perspectives for quantum information technologies, and for the exploration of the quantum-classical boundary. Here we present the experimental realization of a monolithic solid-state hybrid system governed by material strain: a quantum dot is embedded within a nanowire that features discrete mechanical resonances corresponding to flexural vibration modes. Mechanical vibrations result in a time-varying strain field that modulates the quantum dot transition energy. This approach simultaneously offers a large light-extraction efficiency and a large exciton-phonon coupling strength g0. By means of optical and mechanical spectroscopy, we find that g0/2 π is nearly as large as the mechanical frequency, a criterion that defines the ultrastrong coupling regime.

8.
Nat Commun ; 4: 1581, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23481389

RESUMEN

With the development of single-atom transistors, consisting of single dopants, nanofabrication has reached an extreme level of miniaturization. Promising functionalities for future nanoelectronic devices are based on the possibility of coupling several of these dopants to each other. This already allowed to perform spectroscopy of the donor state by d.c. electrical transport. The next step, namely manipulating a single electron over two dopants, remains a challenge. Here we demonstrate electron pumping through two phosphorus donors in series implanted in a silicon nanowire. While quantized pumping is achieved in the low-frequency adiabatic regime, we observe remarkable features at higher frequency when the charge transfer is limited either by the tunnelling rates to the electrodes or between the two donors. The transitions between quantum states are modelled involving a Landau-Zener transition, allowing to reproduce in detail the characteristic signatures observed in the non-adiabatic regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA