Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Ecol ; 84(5): 1253-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25777342

RESUMEN

1. While the effects of deforestation and habitat fragmentation on parasite prevalence or richness are well investigated, host-parasite networks are still understudied despite their importance in understanding the mechanisms of these major disturbances. Because fragmentation may negatively impact species occupancy, abundance and co-occurrence, we predict a link between spatiotemporal changes in habitat and the architecture of host-parasite networks. 2. For this, we used an extensive data set on 16 rodent species and 29 helminth species from seven localities of South-East Asia. We analysed the effects of rapid deforestation on connectance and modularity of helminth-parasite networks. We estimated both the degree of fragmentation and the rate of deforestation through the development of land uses and their changes through the last 20 to 30 years in order to take into account the dynamics of habitat fragmentation in our statistical analyses. 3. We found that rapid fragmentation does not affect helminth species richness per se but impacts host-parasite interactions as the rodent-helminth network becomes less connected and more modular. 4. Our results suggest that parasite sharing among host species may become more difficult to maintain with the increase of habitat disturbance.


Asunto(s)
Biodiversidad , Helmintiasis Animal/epidemiología , Helmintos/fisiología , Interacciones Huésped-Parásitos , Muridae , Enfermedades de los Roedores/epidemiología , Animales , Cambodia/epidemiología , Ecosistema , Sistemas de Información Geográfica , Helmintiasis Animal/parasitología , Laos/epidemiología , Prevalencia , Enfermedades de los Roedores/parasitología , Nave Espacial , Tailandia/epidemiología
2.
Data Brief ; 28: 104934, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31890790

RESUMEN

We here present a reference database and three land use maps produced in 2017 over the Reunion island using a machine learning based methodology. These maps are the result of a satellite image analysis performed using the Moringa land cover processing chain developed in our laboratory. The input dataset for map production consists of a single very high spatial resolution Pleiades images, a time series of Sentinel-2 and Landsat-8 images, a Digital Terrain Model (DTM) and the aforementioned reference database. The Moringa chain adopts an object based approach: the Pleiades image provides spatial accuracy with the delineation of land samples via a segmentation process, the time series provides information on landscape and vegetation dynamics, the DTM provides information on topography and the reference database provides annotated samples (6256 polygons) for the supervised classification process and the validation of the results. The three land use maps follow a hierarchical nomenclature ranging from 4 classes for the least detailed level to 34 classes for the most detailed one. The validation of these maps shows a good quality of the results with overall accuracy rates ranging from 86% to 97%. The maps are freely accessible and used by researchers, land managers (State services and local authorities) and also private companies.

3.
Artículo en Inglés | MEDLINE | ID: mdl-23577229

RESUMEN

BACKGROUND: Predicting habitats prone to favor disease transmission is challenging due to confounding information on habitats, reservoirs, and diseases. Comparative analysis, which aims at investigating ecological and evolutionary patterns among species, is a tool that may help. The emergence of zoonotic pathogens is a major health concern and is closely linked to habitat modifications by human activities. Risk assessment requires a better knowledge of the interactions between hosts, parasites, and the landscape. METHODS: We used information from a field spatial study that investigated the distribution of murid rodents, in various habitats of three countries in Southeast Asia, in combination with their status of infection by 10 taxa of microparasites obtained from the literature. Microparasite species richness was calculated by rodent species on 20,272 rodents of 13 species. Regression tree models and generalized linear models were used to explain microparasite diversity by the average distance between the trapping site and five categories of land cover: forest, steep agriculture land, flat agriculture land, water, and built-up surfaces. Another variable taken into account was the slope. RESULTS: We found that microparasite diversity was positively associated with flat agriculture land, in this context mainly rice fields, and negatively associated with slope. Microparasite diversity decreased sharply a 100 m or less from flat agriculture land. CONCLUSION: We conclude that there is high microparasite circulation in rodents of flooded farmlands, meaning possibly a higher risk of disease for human inhabitants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA