Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 39, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557832

RESUMEN

BACKGROUND: Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS: We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS: Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


Asunto(s)
Proteínas Bacterianas , Glioxilatos/metabolismo , Ingeniería Metabólica , Fosfoenolpiruvato Carboxiquinasa (ATP) , Ácido Succínico/metabolismo , Synechocystis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Synechocystis/genética , Synechocystis/metabolismo
2.
Cells ; 11(17)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36078092

RESUMEN

The plasma protein histidine-rich glycoprotein (HRG) is implicated in the polarization of macrophages to an M1 antitumoral phenotype. The broadly expressed secreted protein stanniocalcin 2 (STC2), also implicated in tumor inflammation, is an HRG interaction partner. With the aim to biochemically characterize the HRG and STC2 complex, binding of recombinant HRG and STC2 preparations to each other and to cells was explored using the quartz crystal microbalance (QCM) methodology. The functionality of recombinant proteins was tested in a phagocytosis assay, where HRG increased phagocytosis by monocytic U937 cells while STC2 suppressed HRG-induced phagocytosis. The binding of HRG to STC2, measured using QCM, showed an affinity between the proteins in the nanomolar range, and both HRG and STC2 bound individually and in combination to vitamin D3-treated, differentiated U937 monocytes. HRG, but not STC2, also bound to formaldehyde-fixed U937 cells irrespective of their differentiation stage in part through the interaction with heparan sulfate. These data show that HRG and STC2 bind to each other as well as to U937 monocytes with high affinity, supporting the relevance of these interactions in monocyte/macrophage polarity.


Asunto(s)
Glicoproteínas , Tecnicas de Microbalanza del Cristal de Cuarzo , Glicoproteínas/metabolismo , Heparitina Sulfato/metabolismo , Proteínas
3.
Biotechnol Biofuels ; 13: 16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32010220

RESUMEN

BACKGROUND: Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. RESULTS: The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobacterium Synechocystis PCC 6803 with increased phosphoenolpyruvate carboxylase (PEPc) levels. The resulting engineered strain (CD-P) showed significantly increased ethylene production (10.5 ± 3.1 µg mL-1 OD-1 day-1) compared to the control strain (6.4 ± 1.4 µg mL-1 OD-1 day-1). Interestingly, extra copies of the native pepc or the heterologous expression of PEPc from the cyanobacterium Synechococcus PCC 7002 (Synechococcus) in the CD-P, increased ethylene production (19.2 ± 1.3 and 18.3 ± 3.3 µg mL-1 OD-1 day-1, respectively) when the cells were treated with the acetyl-CoA carboxylase inhibitor, cycloxydim. A heterologous expression of phosphoenolpyruvate synthase (PPSA) from Synechococcus in the CD-P also increased ethylene production (16.77 ± 4.48 µg mL-1 OD-1 day-1) showing differences in the regulation of the native and the PPSA from Synechococcus in Synechocystis. CONCLUSIONS: This work demonstrates that genetic rewiring of cyanobacterial central carbon metabolism can enhance carbon supply to the TCA cycle and thereby further increase ethylene production.

4.
Sci Rep ; 10(1): 3607, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107404

RESUMEN

Phosphoenolpyruvate carboxylase (PEPc) is an essential enzyme in plants. A photosynthetic form is present both as dimer and tetramer in C4 and CAM metabolism. Additionally, non-photosynthetic PEPcs are also present. The single, non-photosynthetic PEPc of the unicellular cyanobacterium Synechococcus PCC 7002 (Synechococcus), involved in the TCA cycle, was examined. Using size exclusion chromatography (SEC) and small angle X-ray scattering (SAXS), we observed that PEPc in Synechococcus exists as both a dimer and a tetramer. This is the first demonstration of two different oligomerization states of a non-photosynthetic PEPc. High concentration of Mg2+, the substrate PEP and a combination of low concentration of Mg2+ and HCO3- induced the tetramer form of the carboxylase. Using SEC-SAXS analysis, we showed that the oligomerization state of the carboxylase is concentration dependent and that, among the available crystal structures of PEPc, the scattering profile of PEPc of Synechococcus agrees best with the structure of PEPc from Escherichia coli. In addition, the kinetics of the tetramer purified in presence of Mg2+ using SEC, and of the mixed population purified in presence of Mg2+ using a Strep-tagged column were examined. Moreover, the enzyme showed interesting allosteric regulation, being activated by succinate and inhibited by glutamine, and not affected by either malate, 2-oxoglutarate, aspartic acid or citric acid.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Synechococcus/metabolismo , Regulación Alostérica , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Dimerización , Escherichia coli/metabolismo , Glutamina/metabolismo , Magnesio/metabolismo , Conformación Proteica , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA