Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 13(1): 54, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699156

RESUMEN

BACKGROUND: The heat-shock transcription factor 1 (HSF1) has been linked to cell proliferation and survival in cancer and has been proposed as a biomarker for poor prognosis. Here, we assessed the role of HSF1 expression in relation to copy number alteration (CNA) and cancer prognosis. METHODS: Using 10,287 cancer genomes from The Cancer Genome Atlas and Cbioportal databases, we assessed the association of HSF1 expression with CNA and cancer prognosis. CNA of 8q24.3 was categorized as diploid (reference), deletion (fewer copies), gain (+ 1 copy) and amplification (≥ + 2 copies). Multivariate logistic regression modeling was used to assess 5-year survival among those with a first cancer diagnosis and complete follow-up data (N = 9568), categorized per anatomical location and histology, assessing interaction with tumor stage, and expressed as odds ratios and 95% confidence intervals. RESULTS: We found that only 54.1% of all tumors have a normal predicted 8q24.3 copy number and that 8q24.3 located genes including HSF1 are mainly overexpressed due to increased copies number of 8q24.3 in different cancers. The tumor of patients having respectively gain (+ 1 copy) and amplification (≥ + 2 copies) of 8q24.3 display a global increase of 5-year mortality (odds ratio = 1.98, 95% CI 1.22-3.21) and (OR = 2.19, 1.13-4.26) after full adjustment. For separate cancer types, tumor patients with 8q24.3 deletion showed a marked increase of 5-year mortality in uterine (OR = 4.84, [2.75-8.51]), colorectal (OR = 4.12, [1.15-14.82]), and ovarian (OR = 1.83, [1.39-2.41]) cancers; and decreased mortality in kidney cancer (OR = 0.41, [0.21-0.82]). Gain of 8q24.3 resulted in significant mortality changes in 5-year mortality for cancer of the uterus (OR = 3.67, [2.03-6.66]), lung (OR = 1.76, [1.24-2.51]), colorectal (OR = 1.75, [1.32-2.31]) cancers; and amplification for uterine (OR = 4.58, [1.43-14.65]), prostate (OR = 4.41 [3.41-5.71]), head and neck (OR = 2.68, [2.17-3.30]), and stomach (OR = 0.56, [0.36-0.87]) cancers. CONCLUSIONS: Here, we show that CNAs of 8q24.3 genes, including HSF1, are tightly linked to 8q24.3 copy number in tumor patients and can affect patient outcome. Our results indicate that the integration of 8q24.3 CNA detection may be a useful predictor for cancer prognosis.


Asunto(s)
Cromosomas Humanos Par 8/genética , Variaciones en el Número de Copia de ADN/genética , Factores de Transcripción del Choque Térmico/genética , Neoplasias/genética , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Resultado del Tratamiento
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260998

RESUMEN

Cellular quiescence is a reversible differentiation state when cells are changing the gene expression program to reduce metabolic functions and adapt to a new cellular environment. When fission yeast cells are deprived of nitrogen in the absence of any mating partner, cells can reversibly arrest in a differentiated G0-like cellular state, called quiescence. This change is accompanied by a marked alteration of nuclear organization and a global reduction of transcription. Using high-throughput flow cytometry combined with genetic analysis, we describe the results of a comprehensive screen for genes encoding chromatin components and regulators that are required for the entry and the maintenance of cellular quiescence. We show that the histone acetylase and deacetylase complexes, SAGA and Rpd3, have key roles both for G0 entry and survival during quiescence. We reveal a novel function for the Ino80 nucleosome remodeling complex in cellular quiescence. Finally, we demonstrate that components of the MRN complex, Rad3, the nonhomologous end-joining, and nucleotide excision DNA repair pathways are essential for viability in G0.


Asunto(s)
Ciclo Celular/genética , Cromatina/metabolismo , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Supervivencia Celular , Análisis por Conglomerados , Reparación del ADN/genética , Histonas/metabolismo , Modelos Biológicos , Mutación/genética , Dinámicas no Lineales , Fenotipo
3.
Proc Natl Acad Sci U S A ; 112(6): 1699-703, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624469

RESUMEN

There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.


Asunto(s)
Biomarcadores/análisis , Nanopartículas de Magnetita/análisis , Magnetospirillum/química , Magnetospirillum/crecimiento & desarrollo , Oligoelementos/análisis , Análisis de Varianza , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Fermentación , Óxido Ferrosoférrico/síntesis química , Magnetospirillum/metabolismo , Microscopía Electrónica de Transmisión , Oligoelementos/metabolismo
4.
PLoS Genet ; 9(3): e1003371, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516381

RESUMEN

Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1) at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1) occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1) at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1) in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1) nucleosomes.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona , ADN Helicasas , ADN-Topoisomerasas de Tipo I , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrómero/genética , Centrómero/ultraestructura , Cromatina/genética , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Histonas/genética , Histonas/metabolismo , Recombinación Homóloga , Cinetocoros/ultraestructura , Nucleosomas/genética , Recombinasa Rad51/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
PLoS Genet ; 8(9): e1002974, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028372

RESUMEN

Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.


Asunto(s)
Centrómero/genética , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heterocromatina/genética , Histonas/genética , Humanos , Cinetocoros , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
EMBO J ; 29(13): 2126-34, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20526281

RESUMEN

DNA topoisomerases regulate the topological state of the DNA double helix and are key enzymes in the processes of DNA replication, transcription and genome stability. Using the fission yeast model Schizosaccharomyces pombe, we investigate genome wide how DNA topoisomerases I and II affect chromatin dynamics and gene expression in vivo. We show that topoisomerase I activity is directly required for efficient nucleosome disassembly at gene promoter regions. Lack of topoisomerase activity results in increased nucleosome occupancy, perturbed histone modifications and reduced transcription from these promoters. Strong correlative evidence suggests that topoisomerase I cooperates with the ATP-dependent chromatin remodeller Hrp1 in nucleosome disassembly. Our study links topoisomerase activity to the maintenance of open chromatin and regulating transcription in vivo.


Asunto(s)
Cromatina/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Transcripción Genética
7.
Front Nutr ; 11: 1369950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571748

RESUMEN

Starch is a primary energy storage for plants, making it an essential component of many plant-based foods consumed today. Resistant starch (RS) refers to those starch fractions that escape digestion in the small intestine and reach the colon where they are fermented by the microflora. RS has been repeatedly reported as having benefits on health, but ensuring that its content remains in food processing may be challenging. The present work focuses on the impact RS on health and explores the different processes that may influence its presence in foods, thus potentially interfering with these effects. Clinical evidence published from 2010 to 2023 and studying the effect of RS on health parameters in adult populations, were identified, using PUBMED/Medline and Cochrane databases. The search focused as well on observational studies related to the effect of food processes on RS content. While processes such as milling, fermentation, cooking and heating seem to have a deleterious influence on RS content, other processes, such as cooling, cooking time, storage time, or water content, may positively impact its presence. Regarding the influence on health parameters, there is a body of evidence suggesting an overall significant beneficial effect of RS, especially type 1 and 2, on several health parameters such as glycemic response, insulin resistance index, bowel function or inflammatory markers. Effects are more substantiated in individuals suffering from metabolic diseases. The effects of RS may however be exerted differently depending on the type. A better understanding of the influence of food processes on RS can guide the development of dietary intake recommendations and contribute to the development of food products rich in RS.

8.
Int J Hyperthermia ; 29(8): 801-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24024595

RESUMEN

We review the most recent and significant results published in the field of magnetotactic bacteria (MTB), in particular data relating to the use of bacterial magnetosomes in magnetic hyperthermia for the treatment of tumours. We review different methods for cultivating MTB and preparing suspensions of bacterial magnetosomes. As well as the production of magnetosomes, we also review key data on the toxicity of the magnetosomes as well as their heating and anti-tumour efficiencies. The toxicity and efficiency of magnetosomes needs to be understood and the risk-benefit ratio with which to evaluate their use in the magnetic hyperthermia treatment of tumours needs to be measured.


Asunto(s)
Hipertermia Inducida/métodos , Magnetosomas , Neoplasias/terapia , Animales , Humanos , Fenómenos Magnéticos
9.
Front Immunol ; 14: 1249330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691915

RESUMEN

PD-1 and PD-L1 are crucial regulators of immunity expressed on the surface of T cells and tumour cells, respectively. Cancer cells frequently use PD-1/PD-L1 to evade immune detection; hence, blocking them exposes tumours to be attacked by activated T cells. The synergy of PD-1/PD-L1 blockade with type I interferon (IFN) can improve cancer treatment efficacy. Type I IFN activates immune cells boosts antigen presentation and controls proliferation. In addition, type I IFN increases tumour cell sensitivity to the blockade. Combining the two therapies increases tumoral T cell infiltration and activation within tumours, and stimulate the generation of memory T cells, leading to prolonged patient survival. However, limitations include heterogeneous responses, the need for biomarkers to predict and monitor outcomes, and adverse effects and toxicity. Although treatment resistance remains an obstacle, the combined therapeutic efficacy of IFNα/ß and PD-1/PD-L1 blockade demonstrated considerable benefits across a spectrum of cancer types, notably in melanoma. Overall, the phases I and II clinical trials have demonstrated safety and efficiency. In future, further investigations in clinical trials phases III and IV are essential to compare this combinatorial treatment with standard treatment and assess long-term side effects in patients.


Asunto(s)
Interferón Tipo I , Melanoma , Humanos , Interferón Tipo I/uso terapéutico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Interferón-alfa , Inhibidores de Puntos de Control Inmunológico/efectos adversos
10.
Adv Nutr ; 14(1): 22-29, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36811591

RESUMEN

Food fermentation using sourdough-i.e., consortia of lactic bacteria and yeasts-is increasingly considered among the public as a natural transformation yielding nutritional benefits; however, it is unclear whether its alleged properties are validated by science. The aim of this study was to systematically review the clinical evidence related to the effect of sourdough bread on health. Bibliographic searches were performed in 2 different databases (The Lens and PubMed) up to February 2022. Eligible studies were randomized controlled trials involving adults, healthy or not, given any type of sourdough bread compared with those given any type of yeast bread. A total of 573 articles were retrieved and investigated, of which 25 clinical trials met the inclusion criteria. The 25 clinical trials included a total of 542 individuals. The main outcomes investigated in the retrieved studies were glucose response (N = 15), appetite (N = 3), gastrointestinal markers (N = 5), and cardiovascular markers (N = 2). Overall, it is currently difficult to establish a clear consensus with regards to the beneficial effects of sourdough per se on health when compared with other types of bread because a variety of factors, such as the microbial composition of sourdough, fermentation parameters, cereals, and flour types potentially influence the nutritional properties of bread. Nonetheless, in studies using specific strains and fermentation conditions, significant improvements were observed in parameters related to glycemic response, satiety, or gastrointestinal comfort after bread ingestion. The reviewed data suggest that sourdough has great potential to produce a variety of functional foods; however, its complex and dynamic ecosystem requires further standardization to conclude its clinical health benefits.


Asunto(s)
Ecosistema , Lactobacillus , Humanos , Levaduras , Fermentación , Pan/análisis , Pan/microbiología , Harina/microbiología , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
J Biol Chem ; 286(26): 23600-7, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21531710

RESUMEN

The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-A(Cnp1) associates with gene promoters where histone H3 is depleted by the activity of the Hrp1(Chd1) chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-A(Cnp1) chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-A(Cnp1).


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona , Regiones Promotoras Genéticas/fisiología , ARN de Hongos/biosíntesis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Centrómero/genética , Heterocromatina/genética , Heterocromatina/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , Schizosaccharomyces/genética , Transcripción Genética/fisiología
12.
PLoS Genet ; 5(11): e1000726, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19911051

RESUMEN

Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation.


Asunto(s)
Estructuras Cromosómicas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteómica/métodos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Acetilación , Adenosina Trifosfatasas , Secuencia de Aminoácidos , ADN Intergénico , Proteínas de Unión al ADN/genética , Silenciador del Gen , Lisina/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido
13.
J Microbiol Methods ; 200: 106556, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944821

RESUMEN

Flow cytometry analysis (FCA) is increasingly used to obtain rapid results comparison to common colony-forming units plating method (CFU). Tools are needed for microbiological analysis for solid matrix such as food. Here, we report a fast and robust FCA using double staining with LDS751/DiBAC4(3) to analyze yeast viability in bread dough during baking.


Asunto(s)
Pan , Saccharomyces cerevisiae , Pan/análisis , Pan/microbiología , Fermentación , Citometría de Flujo
14.
EMBO Rep ; 10(9): 1009-14, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19633696

RESUMEN

Histone acetylation and deacetylation are important for gene regulation. The histone acetyltransferase, Gcn5, is an activator of transcriptional initiation that is recruited to gene promoters. Here, we map genome-wide Gcn5 occupancy and histone H3K14ac at high resolution. Gcn5 is predominantly localized to coding regions of highly transcribed genes, where it collaborates antagonistically with the class-II histone deacetylase, Clr3, to modulate H3K14ac levels and transcriptional elongation. An interplay between Gcn5 and Clr3 is crucial for the regulation of many stress-response genes. Our findings suggest a new role for Gcn5 during transcriptional elongation, in addition to its known role in transcriptional initiation.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Sistemas de Lectura Abierta , Proteínas de Schizosaccharomyces pombe/metabolismo , Estrés Fisiológico , Transcripción Genética , Acetilación , Acetiltransferasas/genética , Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Histona Acetiltransferasas/genética , Histonas , Proteínas de Schizosaccharomyces pombe/genética
15.
Neoplasia ; 23(10): 1059-1068, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34555656

RESUMEN

Interferon (IFN) therapy has been the standard of care for a variety of cancers for decades due to the pleiotropic actions of IFNs against malignancies. However, little is known about the role of copy number alteration (CNA) of the IFN gene cluster, located at the 9p21.3, in cancer. This large individual patient data meta-analysis using 9937 patients obtained from cBioportal indicates that CNA of the IFN gene cluster is prevalent among 24 cancer types. Two statistical approaches showed that notably deletion of this cluster is significantly associated with increased mortality in many cancer types particularly uterus (OR = 2.71), kidney (OR = 2.26), and brain (OR = 2.08) cancers. The Cancer Genome Atlas PanCancer analysis also showed that CNA of the IFN gene cluster is significantly associated with decreased overall survival. For instance, the overall survival of patients with brain glioma reduced from 93m (diploidy) to 24m (with the CNA of the IFN gene). In conclusion, the CNA of the IFN gene cluster is associated with increased mortality and decreased overall survival in cancer. Thus, in the prospect of immunotherapy, CNA of IFN gene may be a useful biomarker to predict the prognosis of patients and also as a potential companion diagnostic test to prescribe IFN α/ß therapy.

16.
Bioessays ; 30(6): 526-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18478529

RESUMEN

The centromere is the region of the chromosome where the kinetochore forms. Kinetochores are the attachment sites for spindle microtubules that separate duplicated chromosomes in mitosis and meiosis. Kinetochore formation depends on a special chromatin structure containing the histone H3 variant CENP-A. The epigenetic mechanisms that maintain CENP-A chromatin throughout the cell cycle have been studied extensively but little is known about the mechanism that targets CENP-A to naked centromeric DNA templates. In a recent report published in Science, such de novo centromere assembly of CENP-A is shown to be dependent on heterochromatin and the RNA interference pathway.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Centrómero/genética , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , ADN de Hongos/genética , ADN de Hongos/metabolismo , Histonas/metabolismo , Modelos Biológicos , Interferencia de ARN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transformación Genética
17.
Sci Rep ; 10(1): 6055, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269268

RESUMEN

Heterochromatin regulation is critical for genomic stability. Different H3K9 methylation states have been discovered, with distinct roles in heterochromatin formation and silencing. However, how the transition from H3K9me2 to H3K9me3 is controlled is still unclear. Here, we investigate the role of the conserved bromodomain AAA-ATPase, Abo1, involved in maintaining global nucleosome organisation in fission yeast. We identified several key factors involved in heterochromatin silencing that interact genetically with Abo1: histone deacetylase Clr3, H3K9 methyltransferase Clr4, and HP1 homolog Swi6. Cells lacking Abo1 cultivated at 30 °C exhibit an imbalance of H3K9me2 and H3K9me3 in heterochromatin. In abo1∆ cells, the centromeric constitutive heterochromatin has increased H3K9me2 but decreased H3K9me3 levels compared to wild-type. In contrast, facultative heterochromatin regions exhibit reduced H3K9me2 and H3K9me3 levels in abo1∆. Genome-wide analysis showed that abo1∆ cells have silencing defects in both the centromeres and subtelomeres, but not in a subset of heterochromatin islands in our condition. Thus, our work uncovers a role of Abo1 in stabilising directly or indirectly Clr4 recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Metilación de ADN , Inestabilidad Genómica , Heterocromatina , N-Metiltransferasa de Histona-Lisina/genética , Mutación/genética , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética
18.
Epigenetics ; 15(6-7): 702-714, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31900031

RESUMEN

The transcriptional program that dictates haematopoietic cell fate and differentiation requires an epigenetic regulatory and memory function, provided by a network of epigenetic factors that regulate DNA methylation, post-translational histone modifications and chromatin structure. Disturbed epigenetic regulation causes perturbations in the blood cell differentiation program that results in various types of haematopoietic disorders. Thus, accurate epigenetic regulation is essential for functional haematopoiesis. In this study, we used a CRISPR-Cas9 screening approach to identify new epigenetic regulators in myeloid differentiation. We designed a Chromatin-UMI CRISPR guide library targeting 1092 epigenetic regulators. Phorbol 12-myristate 13-acetate (PMA) treatment of the chronic myeloid leukaemia cell line K-562 was used as a megakaryocytic myeloid differentiation model. Both previously described developmental epigenetic regulators and novel factors were identified in our screen. In this study, we validated and characterized a role for the chromatin remodeller CHD2 in myeloid proliferation and megakaryocytic differentiation.


Asunto(s)
Proteínas de Unión al ADN/genética , Mielopoyesis , Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Humanos , Células K562 , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Acetato de Tetradecanoilforbol/farmacología
19.
Methods Mol Biol ; 529: 279-95, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381973

RESUMEN

Chromatin immunoprecipitation (ChIP) is a powerful procedure to investigate the interactions between proteins and DNA. ChIP-chip combines chromatin immunoprecipitation and DNA microarray analysis to identify protein-DNA interactions that occur in vivo. This genome-wide analysis of protein-DNA association is carried out in several steps including chemical cross-linking, cell lysis, DNA fragmentation and immunoaffinity purification that allow the identification of DNA interactions and provide a powerful tool for genome-wide investigations. Immunoprecipitated DNA fragments associated with the desired protein are amplified, labelled and hybridized to DNA microarrays to detect enriched signals compared to a labelled reference sample.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Schizosaccharomyces/metabolismo , Cromatina/metabolismo , Formaldehído , Microesferas , Proteínas Nucleares/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sonicación , Fijación del Tejido
20.
Epigenetics Chromatin ; 12(1): 45, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315658

RESUMEN

BACKGROUND: Cellular quiescence is a reversible differentiation state during which cells modify their gene expression program to inhibit metabolic functions and adapt to a new cellular environment. The epigenetic changes accompanying these alterations are not well understood. We used fission yeast cells as a model to study the regulation of quiescence. When these cells are starved for nitrogen, the cell cycle is arrested in G1, and the cells enter quiescence (G0). A gene regulatory program is initiated, including downregulation of thousands of genes-for example, those related to cell proliferation-and upregulation of specific genes-for example, autophagy genes-needed to adapt to the physiological challenge. These changes in gene expression are accompanied by a marked alteration of nuclear organization and chromatin structure. RESULTS: Here, we investigated the role of Leo1, a subunit of the conserved RNA polymerase-associated factor 1 (Paf1) complex, in the quiescence process using fission yeast as the model organism. Heterochromatic regions became very dynamic in fission yeast in G0 during nitrogen starvation. The reduction of heterochromatin in early G0 was correlated with reduced target of rapamycin complex 2 (TORC2) signaling. We demonstrated that cells lacking Leo1 show reduced survival in G0. In these cells, heterochromatic regions, including subtelomeres, were stabilized, and the expression of many genes, including membrane transport genes, was abrogated. TOR inhibition mimics the effect of nitrogen starvation, leading to the expression of subtelomeric genes, and this effect was suppressed by genetic deletion of leo1. CONCLUSIONS: We identified a protein, Leo1, necessary for survival during quiescence. Leo1 is part of a conserved protein complex, Paf1C, linked to RNA polymerase II. We showed that Leo1, acting downstream of TOR, is crucial for the dynamic reorganization of chromosomes and the regulation of gene expression during cellular quiescence. Genes encoding membrane transporters are not expressed in quiescent leo1 mutant cells, and cells die after 2 weeks of nitrogen starvation. Taken together, our results suggest that Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence.


Asunto(s)
Heterocromatina/metabolismo , Proteínas de Unión al ARN/metabolismo , Fase de Descanso del Ciclo Celular/genética , Ciclo Celular/genética , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Heterocromatina/genética , Histonas/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Fase de Descanso del Ciclo Celular/fisiología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA