Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 282(1812): 20150973, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26224710

RESUMEN

Trophic interactions in multiprey systems can be largely determined by prey distributions. Yet, classic predator-prey models assume spatially homogeneous interactions between predators and prey. We developed a spatially informed theory that predicts how habitat heterogeneity alters the landscape-scale distribution of mortality risk of prey from predation, and hence the nature of predator interactions in multiprey systems. The theoretical model is a spatially explicit, multiprey functional response in which species-specific advection-diffusion models account for the response of individual prey to habitat edges. The model demonstrates that distinct responses of alternative prey species can alter the consequences of conspecific aggregation, from increasing safety to increasing predation risk. Observations of threatened boreal caribou, moose and grey wolf interacting over 378 181 km(2) of human-managed boreal forest support this principle. This empirically supported theory demonstrates how distinct responses of apparent competitors to landscape heterogeneity, including to human disturbances, can reverse density dependence in fitness correlates.


Asunto(s)
Ciervos/fisiología , Cadena Alimentaria , Conducta Predatoria , Lobos/fisiología , Animales , Canadá , Modelos Biológicos , Reno/fisiología
2.
Am Nat ; 181(6): 827-36, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23669544

RESUMEN

The assessment of disturbance effects on wildlife and resulting mitigation efforts are founded on edge-effect theory. According to the classical view, the abundance of animals affected by human disturbance should increase monotonically with distance from disturbed areas to reach a maximum at remote locations. Here we show that distance-dependent movement taxis can skew abundance distributions toward disturbed areas. We develop an advection-diffusion model based on basic movement behavior commonly observed in animal populations and parameterize the model from observations on radio-collared caribou in a boreal ecosystem. The model predicts maximum abundance at 3.7 km from cutovers and roads. Consistently, aerial surveys conducted over 161,920 km(2) showed that the relative probability of caribou occurrence displays nonmonotonic changes with the distance to anthropogenic features, with a peak occurring at 4.5 km away from these features. This aggregation near disturbed areas thus provides the predators of this top-down-controlled, threatened herbivore species with specific locations to concentrate their search. The edge-effect theory developed here thus predicts that human activities should alter animal distribution and food web properties differently than anticipated from the current paradigm. Consideration of such nonmonotonic response to habitat edges may become essential to successful wildlife conservation.


Asunto(s)
Distribución Animal , Ecosistema , Modelos Biológicos , Reno/psicología , Animales , Femenino , Sistemas de Información Geográfica , Humanos , Modelos Estadísticos , Quebec , Árboles
3.
Sci Rep ; 7(1): 6370, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28744023

RESUMEN

Primary production can determine the outcome of management actions on ecosystem properties, thereby defining sustainable management. Yet human agencies commonly overlook spatio-temporal variations in productivity by recommending fixed resource extraction thresholds. We studied the influence of forest productivity on habitat disturbance levels that boreal caribou - a threatened, late-seral ungulate under top-down control - should be able to withstand. Based on 10 years of boreal caribou monitoring, we found that adult survival and recruitment to populations decreased with landscape disturbance, but increased with forest productivity. This benefit of productivity reflected the net outcome of an increase in resources for apparent competitors and predators of caribou, and a more rapid return to the safety of mature conifer forests. We estimated 3-fold differences in forest harvesting levels that caribou populations could withstand due to variations in forest productivity. The adjustment of ecosystem provisioning services to local forest productivity should provide strong conservation and socio-economic advantages.


Asunto(s)
Conducta Predatoria/fisiología , Reno/fisiología , Tracheophyta/crecimiento & desarrollo , Animales , Conservación de los Recursos Naturales , Ecosistema , Bosques , Humanos , Densidad de Población , Dinámica Poblacional
4.
PLoS One ; 10(7): e0129857, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26132204

RESUMEN

Studying diet is fundamental to animal ecology and scat analysis, a widespread approach, is considered a reliable dietary proxy. Nonetheless, this method has weaknesses such as non-random sampling of habitats and individuals, inaccurate evaluation of excretion date, and lack of assessment of inter-individual dietary variability. We coupled GPS telemetry and scat analyses of black bears Ursus americanus Pallas to relate diet to individual characteristics and habitat use patterns while foraging. We captured 20 black bears (6 males and 14 females) and fitted them with GPS/Argos collars. We then surveyed GPS locations shortly after individual bear visits and collected 139 feces in 71 different locations. Fecal content (relative dry matter biomass of ingested items) was subsequently linked to individual characteristics (sex, age, reproductive status) and to habitats visited during foraging bouts using Brownian bridges based on GPS locations prior to feces excretion. At the population level, diet composition was similar to what was previously described in studies on black bears. However, our individual-based method allowed us to highlight different intra-population patterns, showing that sex and female reproductive status had significant influence on individual diet. For example, in the same habitats, females with cubs did not use the same food sources as lone bears. Linking fecal content (i.e., food sources) to habitat previously visited by different individuals, we demonstrated a potential differential use of similar habitats dependent on individual characteristics. Females with cubs-of-the-year tended to use old forest clearcuts (6-20 years old) to feed on bunchberry, whereas females with yearling foraged for blueberry and lone bears for ants. Coupling GPS telemetry and scat analyses allows for efficient detection of inter-individual or inter-group variations in foraging strategies and of linkages between previous habitat use and food consumption, even for cryptic species. This approach could have interesting ecological implications, such as supporting the identification of habitats types abundant in important food sources for endangered species targeted by conservation measures or for management actions for depredating animals.


Asunto(s)
Conducta Alimentaria , Telemetría , Ursidae/fisiología , Animales , Femenino , Bosques , Masculino
5.
Ecol Evol ; 3(9): 2880-91, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24101980

RESUMEN

For conservation purposes, it is important to design studies that explicitly quantify responses of focal species to different land management scenarios. Here, we propose an approach that combines the influence of landscape matrices with the intrinsic attributes of remaining habitat patches on the space use behavior of woodland caribou (Rangifer tarandus caribou), a threatened subspecies of Rangifer. We sought to link characteristics of forest remnants and their surrounding environment to caribou use (i.e., occurrence and intensity). We tracked 51 females using GPS telemetry north of the Saguenay River (Québec, Canada) between 2004 and 2010 and documented their use of mature forest remnants ranging between 30 and ∼170 000 ha in a highly managed landscape. Habitat proportion and anthropogenic feature density within incremental buffer zones (from 100 to 7500 m), together with intrinsic residual forest patch characteristics, were linked to caribou GPS location occurrence and density to establish the range of influence of the surrounding matrix. We found that patch size and composition influence caribou occurrence and intensity of use within a patch. Patch size had to reach approximately 270 km(2) to attain 75% probability of use by caribou. We found that small patches (<100 km(2)) induced concentration of caribou activities that were shown to make them more vulnerable to predation and to act as ecological traps. Woodland caribou clearly need large residual forest patches, embedded in a relatively undisturbed matrix, to achieve low densities as an antipredator strategy. Our patch-based methodological approach, using GPS telemetry data, offers a new perspective of space use behavior of wide-ranging species inhabiting fragmented landscapes and allows us to highlight the impacts of large scale management. Furthermore, our study provides insights that might have important implications for effective caribou conservation and forest management.

6.
PLoS One ; 8(10): e78510, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194942

RESUMEN

Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.


Asunto(s)
Distribución Animal , Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema , Reno/fisiología , Estaciones del Año , Animales , Geografía , Modelos Lineales , Dinámica Poblacional , Quebec
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA