Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 6949, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332786

RESUMEN

Temporal changes in groundwater chemistry can reveal information about the evolution of flow path connectivity during crustal deformation. Here, we report transient helium and argon concentration anomalies monitored during a series of hydraulic reservoir stimulation experiments measured with an in situ gas equilibrium membrane inlet mass spectrometer. Geodetic and seismic analyses revealed that the applied stimulation treatments led to the formation of new fractures (hydraulic fracturing) and the reactivation of natural fractures (hydraulic shearing), both of which remobilized (He, Ar)-enriched fluids trapped in the rock mass. Our results demonstrate that integrating geochemical information with geodetic and seismic data provides critical insights to understanding dynamic changes in fracture network connectivity during reservoir stimulation. The results of this study also shed light on the linkages between fluid migration, rock deformation and seismicity at the decameter scale.

2.
Sci Data ; 5: 180269, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30480661

RESUMEN

High-resolution 3D geological models are crucial for underground development projects and corresponding numerical simulations with applications in e.g., tunneling, hydrocarbon exploration, geothermal exploitation and mining. Most geological models are based on sparse geological data sampled pointwise or along lines (e.g., boreholes), leading to oversimplified model geometries. In the framework of a hydraulic stimulation experiment in crystalline rock at the Grimsel Test Site, we collected geological data in 15 boreholes using a variety of methods to characterize a decameter-scale rock volume. The experiment aims to identify and understand relevant thermo-hydro-mechanical-seismic coupled rock mass responses during high-pressure fluid injections. Prior to fluid injections, we characterized the rock mass using geological, hydraulic and geophysical prospecting. The combination of methods allowed for compilation of a deterministic 3D geological analog that includes five shear zones, fracture density information and fracture locations. The model may serve as a decameter-scale analog of crystalline basement rocks, which are often targeted for enhanced geothermal systems. In this contribution, we summarize the geological data and the resulting geological interpretation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA