Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS Pathog ; 19(3): e1011165, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36881595

RESUMEN

Stimulation of naïve T cells during primary infection or vaccination drives the differentiation and expansion of effector and memory T cells that mediate immediate and long-term protection. Despite self-reliant rescue from infection, BCG vaccination, and treatment, long-term memory is rarely established against Mycobacterium tuberculosis (M.tb) resulting in recurrent tuberculosis (TB). Here, we show that berberine (BBR) enhances innate defense mechanisms against M.tb and stimulates the differentiation of Th1/Th17 specific effector memory (TEM), central memory (TCM), and tissue-resident memory (TRM) responses leading to enhanced host protection against drug-sensitive and drug-resistant TB. Through whole proteome analysis of human PBMCs derived from PPD+ healthy individuals, we identify BBR modulated NOTCH3/PTEN/AKT/FOXO1 pathway as the central mechanism of elevated TEM and TRM responses in the human CD4+ T cells. Moreover, BBR-induced glycolysis resulted in enhanced effector functions leading to superior Th1/Th17 responses in human and murine T cells. This regulation of T cell memory by BBR remarkably enhanced the BCG-induced anti-tubercular immunity and lowered the rate of TB recurrence due to relapse and re-infection. These results thus suggest tuning immunological memory as a feasible approach to augment host resistance against TB and unveil BBR as a potential adjunct immunotherapeutic and immunoprophylactic against TB.


Asunto(s)
Berberina , Tuberculosis , Humanos , Animales , Ratones , Berberina/farmacología , Proteínas Proto-Oncogénicas c-akt , Vacuna BCG , Células T de Memoria , Receptor Notch3
2.
J Infect Dis ; 228(9): 1166-1178, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37290049

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, is acquiring drug resistance at a faster rate than the discovery of new antibiotics. Therefore, alternate therapies that can limit the drug resistance and disease recurrence are urgently needed. Emerging evidence indicates that combined treatment with antibiotics and an immunomodulator provides superior treatment efficacy. Clofazimine (CFZ) enhances the generation of T central memory (TCM) cells by blocking the Kv1.3+ potassium channels. Rapamycin (RAPA) facilitates M. tuberculosis clearance by inducing autophagy. In this study, we observed that cotreatment with CFZ and RAPA potently eliminates both multiple and extensively drug-resistant (MDR and XDR) clinical isolates of M. tuberculosis in a mouse model by inducing robust T-cell memory and polyfunctional TCM responses. Furthermore, cotreatment reduces the expression of latency-associated genes of M. tuberculosis in human macrophages. Therefore, CFZ and RAPA cotherapy holds promise for treating patients infected with MDR and XDR strains of M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Ratones , Humanos , Clofazimina/efectos adversos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Sirolimus/farmacología , Sirolimus/uso terapéutico , Células T de Memoria , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
3.
J Infect Dis ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37863472

RESUMEN

Tuberculosis (TB) is the second leading infectious killer after COVID-19. Standard anti-tubercular drugs exhibit various limitations like toxicity, lengthy, and unresponsive to dormant and drug resistant organisms. Here, we report that all-trans-retinoic acid (ATRA) improves M.tb clearance in mice while treating with anti-tubercular drug isoniazid (INH). Interestingly, ATRA promoted activities of lysosomes, mitochondria, and production of various inflammatory mediators in macrophages. Furthermore, ATRA upregulated the expression of genes of lipid metabolic pathways in macrophages. Along this line, we registered that ATRA activated MEK/ERK pathway in macrophages in-vitro and MEK/ERK and p38 MAPK pathways in the mice. Finally, ATRA induced both Th1 and Th17 responses in lungs and spleens of M.tb-infected mice. Taken together, these data indicated that ATRA provides beneficial adjunct therapeutic value by modulating MEK/ERK and p38 MAPK pathways and thus warrants further testing for human use.

5.
PLoS Pathog ; 17(8): e1009805, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34415976

RESUMEN

Tuberculosis (TB) remains a major health problem throughout the world with one third of the population latently infected and ~1.74 million deaths annually. Current therapy consists of multiple antibiotics and a lengthy treatment regimen, which is associated with risk for the generation of drug-resistant Mycobacterium tuberculosis variants. Therefore, alternate host directed strategies that can shorten treatment length and enhance anti-TB immunity during the treatment phase are urgently needed. Here, we show that Luteolin, a plant-derived hepatoprotective immunomodulator, when administered along with isoniazid as potential host directed therapy promotes anti-TB immunity, reduces the length of TB treatment and prevents disease relapse. Luteolin also enhances long-term anti-TB immunity by promoting central memory T cell responses. Furthermore, we found that Luteolin enhances the activities of natural killer and natural killer T cells, both of which exhibit antitubercular attributes. Therefore, the addition of Luteolin to conventional antibiotic therapy may provide a means to avoid the development of drug-resistance and to improve disease outcome.


Asunto(s)
Antituberculosos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Inmunoterapia/métodos , Isoniazida/farmacología , Luteolina/farmacología , Mycobacterium tuberculosis/inmunología , Tuberculosis/tratamiento farmacológico , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Quimioterapia Combinada , Factores Inmunológicos , Isoniazida/efectos adversos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/inmunología
6.
PLoS Pathog ; 16(9): e1008887, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32956412

RESUMEN

Despite the availability of multiple antibiotics, tuberculosis (TB) remains a major health problem worldwide, with one third of the population latently infected and ~2 million deaths annually. The only available vaccine for TB, Bacillus Calmette Guérin (BCG), is ineffective against adult pulmonary TB. Therefore, alternate strategies that enhance vaccine efficacy are urgently needed. Vaccine efficacy and long-term immune memory are critically dependent on central memory T (TCM) cells, whereas effector memory T (TEM) cells are important for clearing acute infections. Recently, it has been shown that inhibition of the Kv1.3 K+ ion channel, which is predominantly expressed on TEM but not TCM cells, profoundly enhances TCM cell differentiation. We exploited this phenomenon to improve TCM:TEM cell ratios and protective immunity against Mycobacterium tuberculosis infection in response to BCG vaccination of mice. We demonstrate that luteolin, a plant-derived Kv1.3 K+ channel inhibitor, profoundly promotes TCM cells by selectively inhibiting TEM cells, and significantly enhances BCG vaccine efficacy. Thus, addition of luteolin to BCG vaccination may provide a sustainable means to improve vaccine efficacy by boosting host immunity via modulation of memory T cell differentiation.


Asunto(s)
Vacuna BCG/inmunología , Memoria Inmunológica/efectos de los fármacos , Canal de Potasio Kv1.3 , Luteolina/farmacología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Animales , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/inmunología , Ratones , Tuberculosis/prevención & control
7.
J Biol Chem ; 294(21): 8555-8563, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30975902

RESUMEN

The widespread availability and use of modern synthetic therapeutic agents have led to a massive decline in ethnomedical therapies. However, these synthetic agents often possess toxicity leading to various adverse effects. For instance, anti-tubercular treatment (ATT) is toxic, lengthy, and severely impairs host immunity, resulting in posttreatment vulnerability to reinfection and reactivation of tuberculosis (TB). Incomplete ATT enhances the risk for the generation of multidrug- or extensively drug-resistant (MDR or XDR, respectively) variants of Mycobacterium tuberculosis (M. tb), the TB-causing microbe. Therefore, a new therapeutic approach that minimizes these risks is urgently needed to combat this deadly disease and prevent future TB epidemics. Previously, we have shown that the phytochemical bergenin induces T helper 1 (Th1)- and Th17 cell-based protective immune responses and potently inhibits mycobacterial growth in a murine model of M. tb infection, suggesting bergenin as a potential adjunct agent to TB therapy. Here, we combined ATT therapy with bergenin and found that this combination reduces immune impairment and the length of treatment in mice. We observed that co-treatment with the anti-TB drug isoniazid and bergenin produces additive effects and significantly reduces bacterial loads compared with isoniazid treatment alone. The bergenin co-treatment also reduced isoniazid-induced immune impairment; promoted long-lasting, antigen-specific central memory T cell responses; and acted as a self-propelled vaccine. Of note, bergenin treatment significantly reduced the bacterial burden of a multidrug-resistant TB strain. These observations suggest that bergenin is a potent immunomodulatory agent that could be further explored as a potential adjunct to TB therapy.


Asunto(s)
Benzopiranos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inmunoterapia , Isoniazida/farmacología , Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Células Th17/inmunología , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Farmacorresistencia Bacteriana Múltiple/inmunología , Ratones , Células TH1/patología , Células Th17/patología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/inmunología , Tuberculosis Resistente a Múltiples Medicamentos/patología
8.
Microb Pathog ; 137: 103714, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31493502

RESUMEN

Leprosy, once considered as poor man's disease may cause severe neurological complications and physical disabilities. Classification of leprosy depends upon the cell mediated and humoral immune responses of the host, from tuberculoid to lepromatous stage. Current therapy to prevent the disease is not only very lengthy but also consists of expensive multiple antibiotics in combination. Treatment and the duration depend on the bacillary loads, from six months in paucibacillary to a year in multibacillary leprosy. Although as per WHO recommendations, these antibiotics are freely available but still out of reach to patients of many rural areas of the world. In this review, we have focused on the nutritional aspect during the multi-drug therapy of leprosy along with the role of nutrition, particularly malnutrition, on susceptibility of Mycobacterium leprae and development of clinical symptoms. We further discussed the diet plan for the patients and how diet plans can affect the immune responses during the disease.


Asunto(s)
Dieta , Lepra/tratamiento farmacológico , Lepra/inmunología , Desnutrición , Antígenos Bacterianos/farmacología , Citocinas/metabolismo , Alimentos , Predisposición Genética a la Enfermedad , Humanos , Inmunidad , Inmunidad Humoral , Lepra/diagnóstico , Lepra/metabolismo , Masculino , Mycobacterium leprae/inmunología , Estado Nutricional , Factores de Riesgo , Selenio , Vitaminas , Zinc
9.
J Infect Dis ; 214(9): 1456-1464, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27571906

RESUMEN

Tuberculosis is the oldest known infectious disease, yet there is no effective vaccine against adult pulmonary tuberculosis. Emerging evidence indicates that T-helper 1 and T-helper 17 cells play important roles in host protection against tuberculosis. However, tuberculosis vaccine efficacy in mice is critically dependent on the balance between antigen-specific central memory T (Tcm) and effector memory T (Tem) cells. Specifically, a high Tcm/Tem cell ratio is essential for optimal vaccine efficacy. Here, we show that inhibition of Kv1.3, a potassium channel preferentially expressed by Tem cells, by Clofazimine selectively expands Tcm cells during BCG vaccination. Furthermore, mice that received clofazimine after BCG vaccination exhibited significantly enhanced resistance against tuberculosis. This superior activity against tuberculosis could be adoptively transferred to naive, syngeneic mice by CD4+ T cells. Therefore, clofazimine enhances Tcm cell expansion, which in turn provides improved vaccine efficacy. Thus, Kv1.3 blockade is a promising approach for enhancing the efficacy of the BCG vaccine in humans.


Asunto(s)
Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/inmunología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Vacunas contra la Tuberculosis/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Clofazimina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Mycobacterium/inmunología , Tuberculosis Pulmonar/inmunología , Vacunación/métodos
10.
J Biol Chem ; 290(23): 14407-17, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25847237

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1ß and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.


Asunto(s)
Proteínas Bacterianas/inmunología , Mycobacterium tuberculosis/inmunología , Células TH1/microbiología , Células Th17/microbiología , Tuberculosis/inmunología , Factores de Virulencia/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Interacciones Huésped-Patógeno , Interleucina-10/inmunología , Interleucina-12/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Mycobacterium tuberculosis/genética , Células TH1/inmunología , Células TH1/patología , Células Th17/inmunología , Células Th17/patología , Tuberculosis/patología , Factores de Virulencia/genética
11.
J Biol Chem ; 289(48): 33404-11, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25315774

RESUMEN

Tuberculosis affects nine million individuals and kills almost two million people every year. The only vaccine available, Bacillus Calmette-Guerin (BCG), has been used since its inception in 1921. Although BCG induces host-protective T helper 1 (Th1) cell immune responses, which play a central role in host protection, its efficacy is unsatisfactory, suggesting that additional methods to enhance protective immune responses are needed. Recently we have shown that simultaneous inhibition of Th2 cells and Tregs by using the pharmacological inhibitors suplatast tosylate and D4476, respectively, dramatically enhances Mycobacterium tuberculosis clearance and induces superior Th1 responses. Here we show that treatment with these two drugs during BCG vaccination dramatically improves vaccine efficacy. Furthermore, we demonstrate that these drugs induce a shift in the development of T cell memory, favoring central memory T (Tcm) cell responses over effector memory T (Tem) cell responses. Collectively, our findings provide evidence that simultaneous inhibition of Th2 cells and Tregs during BCG vaccination promotes vaccine efficacy.


Asunto(s)
Antialérgicos/farmacología , Arilsulfonatos/farmacología , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Imidazoles/farmacología , Mycobacterium bovis , Mycobacterium tuberculosis/inmunología , Compuestos de Sulfonio/farmacología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Vacunas contra la Tuberculosis/farmacología , Tuberculosis Pulmonar/prevención & control , Animales , Diferenciación Celular/inmunología , Ratones , Ratones Endogámicos BALB C , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología
12.
J Biol Chem ; 289(23): 16508-15, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24711459

RESUMEN

Tuberculosis remains the biggest infectious threat to humanity with one-third of the population infected and 1.4 million deaths and 8.7 million new cases annually. Current tuberculosis therapy is lengthy and consists of multiple antimicrobials, which causes poor compliance and high treatment dropout, resulting in the development of drug-resistant variants of tuberculosis. Therefore, alternate methods to treat tuberculosis are urgently needed. Mycobacterium tuberculosis evades host immune responses by inducing T helper (Th)2 and regulatory T (Treg) cell responses, which diminish protective Th1 responses. Here, we show that animals (Stat-6(-/-)CD4-TGFßRIIDN mice) that are unable to generate both Th2 cells and Tregs are highly resistant to M. tuberculosis infection. Furthermore, simultaneous inhibition of these two subsets of Th cells by therapeutic compounds dramatically reduced bacterial burden in different organs. This treatment was associated with the generation of protective Th1 immune responses. As these therapeutic agents are not directed to the harbored organisms, they should avoid the risk of promoting the development of drug-resistant M. tuberculosis variants.


Asunto(s)
Inmunoterapia , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/prevención & control , Animales , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C , Células TH1/inmunología , Células Th2/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología
13.
Eukaryot Cell ; 13(1): 66-76, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24186949

RESUMEN

Candida albicans is an opportunistic fungal pathogen that resides in the human body as a commensal and can turn pathogenic when the host is immunocompromised. Adaptation of C. albicans to host niche-specific conditions is important for the establishment of pathogenicity, where the ability of C. albicans to utilize multiple carbon sources provides additional flexibility. One alternative sugar is N-acetylglucosamine (GlcNAc), which is now established as an important carbon source for many pathogens and can also act as a signaling molecule. Although GlcNAc catabolism has been well studied in many pathogens, the importance of several enzymes involved in the formation of metabolic intermediates still remains elusive. In this context, microarray analysis was carried out to investigate the transcriptional responses induced by GlcNAc under different conditions. A novel gene that was highly upregulated immediately following the GlcNAc catabolic genes was identified and was named GIG2 (GlcNAc-induced gene 2). This gene is regulated in a manner distinct from that of the GlcNAc-induced genes described previously in that GlcNAc metabolism is essential for its induction. Furthermore, this gene is involved in the metabolism of N-acetylneuraminate (sialic acid), a molecule equally important for initial host-pathogen recognition. Mutant cells showed a considerable decrease in fungal burden in mouse kidneys and were hypersensitive to oxidative stress conditions. Since GIG2 is also present in many other fungal and enterobacterial genomes, targeted inhibition of its activity would offer insight into the treatment of candidiasis and other fungal or enterobacterial infections.


Asunto(s)
Acetilglucosamina/metabolismo , Candida albicans/metabolismo , Genes Fúngicos , Animales , Candida albicans/genética , Candida albicans/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Riñón/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Ácido N-Acetilneuramínico/metabolismo , Estrés Oxidativo , Activación Transcripcional , Virulencia/genética
14.
J Biol Chem ; 288(7): 5056-61, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23233675

RESUMEN

Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1ß. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.


Asunto(s)
Células Dendríticas/citología , Regulación Bacteriana de la Expresión Génica , MicroARNs/metabolismo , Mycobacterium tuberculosis/metabolismo , Animales , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Sistema Inmunológico , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitos/metabolismo , Transducción de Señal
15.
Front Immunol ; 15: 1339467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312835

RESUMEN

Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Interacciones Huésped-Patógeno , Transducción de Señal , Apoptosis
16.
Tuberculosis (Edinb) ; 147: 102517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733881

RESUMEN

The extensive inability of the BCG vaccine to produce long-term immune protection has not only accelerated the disease burden but also progressed towards the onset of drug resistance. In our previous study, we have reported the promising effects of Bergenin (Berg) in imparting significant protection as an adjunct immunomodulator against tuberculosis (TB). In congruence with our investigations, we delineated the impact of Berg on T cells, wherein it enhanced adaptive memory responses by modulating key transcription factors, STAT4 and Akt. We translated this finding into the vaccine model of TB and observed a notable reduction in the burden of Mycobacterium tuberculosis (M.tb) in BCG-Berg co-immunized mice as compared to BCG vaccination. Moreover, Berg, along with BCG, also aided in a heightened proinflammatory response milieu that corroborates the host protective immune response against TB. Furthermore, this response aligns with the escalated central and resident memory responses by modulating the Akt-Foxo-Stat4 axis, which plays a crucial role in enhancing the vaccine efficacy of BCG. These findings showcase the utilization of immunomodulator Berg as an immunoprophylactic agent to upgrade immunological memory, making it a more effective defender against TB.


Asunto(s)
Inmunidad Adaptativa , Vacuna BCG , Benzopiranos , Memoria Inmunológica , Ratones Endogámicos C57BL , Mycobacterium tuberculosis , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT4 , Transducción de Señal , Animales , Vacuna BCG/inmunología , Vacuna BCG/farmacología , Memoria Inmunológica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mycobacterium tuberculosis/inmunología , Benzopiranos/farmacología , Factor de Transcripción STAT4/metabolismo , Inmunidad Adaptativa/efectos de los fármacos , Femenino , Tuberculosis/inmunología , Tuberculosis/microbiología , Interacciones Huésped-Patógeno , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Ratones
17.
Microbiol Spectr ; 12(7): e0041224, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38809023

RESUMEN

The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse. Administration of these drugs led to a reduction in innate immune activation and also the cytokines required to trigger protective T cell responses. Moreover, these drugs led to activation-induced cell death in the mycobacterial-specific T cell leading to a reduced killing capacity. Furthermore, these drugs stalled the T cell differentiation into memory subsets by modulating the activation of STAT3, STAT4, FOXO1, and NFκB transcription factors and hampering the Th1 and Th17-mediated long-term host protective memory responses. These findings suggest the urgent need to augment directly observed treatment, short-course (DOTS) therapy with immunomodulatory agents to mitigate the adverse effects linked to the treatment.IMPORTANCEAs a central component of TB eradication initiatives, directly observed treatment, short-course (DOTS) therapy imparts immune-dampening effects during the course of treatment. This approach undermines the host immune system by delaying the activation process and lowering the immune response. In our investigation, we have unveiled the impact of DOTS on specific immune cell populations. Notably, the signaling pathways involving STAT3 and STAT4 critical for memory responses and NFκß associated with pro-inflammation were substantially declined due to the therapy. Consequently, these drugs exhibit limited effectiveness in preventing recurrence of the disease. These observations highlight the imperative integration of immunomodulators to manage TB infection.


Asunto(s)
Antituberculosos , Citocinas , Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Tuberculosis/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Humanos , Animales , Ratones , Citocinas/metabolismo , Inmunidad Innata/efectos de los fármacos , Recurrencia , Transducción de Señal/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th17/inmunología , Células Th17/efectos de los fármacos
18.
Sci Rep ; 14(1): 12935, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839973

RESUMEN

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Asunto(s)
Péptidos , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Ratones , Péptidos/farmacología , Péptidos/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/patología , Simulación del Acoplamiento Molecular , Células A549 , Simulación de Dinámica Molecular , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Masculino , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/uso terapéutico , Unión Proteica , Modelos Animales de Enfermedad
19.
J Biol Chem ; 287(5): 2943-7, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22170065

RESUMEN

TGF-ß is a pleiotropic cytokine that predominantly exerts inhibitory functions in the immune system. Unexpectedly, the in vitro differentiation of both Th17 and Tc17 cells requires TGF-ß. However, animals that are impaired in TGF-ß signaling (TGF-ßRIIDN mice) display multiorgan autoimmune disorders. Here we show that CD4(+) T cells from TGF-ßRIIDN mice are resistant to Th17 cell differentiation and, paradoxically, that CD8(+) T cells from these animals spontaneously acquire an IL-17-producing phenotype. Neutralization of IL-17 or depletion of CD8(+) T cells dramatically inhibited inflammation in TGF-ßRIIDN mice. Therefore, the absence of TGF-ß triggers spontaneous differentiation of IL-17-producing CD8(+) T cells, suggesting that the in vivo and in vitro conditions that promote the differentiation of IL-17-producing CD8(+) T cells are distinct.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/genética , Depleción Linfocítica , Ratones , Ratones Noqueados , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Células Th17/citología , Células Th17/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
20.
J Biol Chem ; 287(40): 33656-63, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22810226

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), resides and replicates within phagocytes and persists in susceptible hosts by modulating protective innate immune responses. Furthermore, M. tuberculosis promotes T helper 2 (Th2) immune responses by altering the balance of T cell polarizing cytokines in infected cells. However, cytokines that regulate Th2 cell differentiation during TB infection remain unknown. Here we show that IL-1ß, produced by phagocytes infected by virulent M. tuberculosis strain H37Rv, directs Th2 cell differentiation. In sharp contrast, the vaccine strain bacille Calmette-Guérin as well as RD-1 and ESAT-6 mutants of H37Rv failed to induce IL-1ß and promote Th2 cell differentiation. Furthermore, ESAT-6 induced IL-1ß production in dendritic cells (DCs), and CD4(+) T cells co-cultured with infected DCs differentiated into Th2 cells. Taken together, our findings indicate that IL-1ß induced by RD-1/ESAT-6 plays an important role in the differentiation of Th2 cells, which in turn facilitates progression of TB by inhibiting host protective Th1 responses.


Asunto(s)
Células Dendríticas/citología , Interleucina-1beta/metabolismo , Mycobacterium tuberculosis/metabolismo , Células Th2/citología , Animales , Diferenciación Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Células Dendríticas/microbiología , Sistema Inmunológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fagocitos/citología , Células Th2/microbiología , Tuberculosis/inmunología , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA