Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338485

RESUMEN

Pear pomace, a byproduct of juice production, represents a valuable reservoir of bioactive compounds with potential health benefits for humans. This study aimed to evaluate the influence of drying method and temperature on pear pomace, specifically focusing on the drying kinetics, grinding characteristics, color, phenolic profile (LC-MS/MS), and antioxidant activities of the powder. Drying using the contact method at 40 °C with microwave assistance demonstrated the shortest duration, whereas freeze-drying was briefer compared to contact-drying without microwave assistance. Freeze-drying resulted in brighter and more easily comminuted pomace. Lyophilized samples also exhibited higher total phenolic compound levels compared to contact-dried ones, correlating with enhanced antioxidant activity. Twenty-one phenolic compounds were identified, with dominant acids being quinic, chlorogenic, and protocatechuic. Flavonoids, primarily isoquercitrin, and rutin, were also presented. Pear pomace dried via contact at 60 °C contained more quinic and protocatechuic acids, while freeze-dried pomace at the same temperature exhibited higher levels of chlorogenic acid, epicatechin, and catechin. The content of certain phenolic components, such as gallic acid and epicatechin, also varied depending on the applied drying temperature.


Asunto(s)
Catequina , Pyrus , Humanos , Catequina/análisis , Cromatografía Liquida , Frutas/química , Espectrometría de Masas en Tándem , Antioxidantes/química , Fenoles/química
2.
Molecules ; 28(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241744

RESUMEN

Cookies made from wheat have become increasingly popular as a snack due to their various advantages, such as their convenience as a ready-to-eat and easily storable food item, wide availability in different types, and affordability. Especially in recent years, there has been a trend towards enriching food with fruit additives, which increase the health-promoting properties of the products. The aim of this study was to examine current trends in fortifying cookies with fruits and their byproducts, with a particular focus on the changes in chemical composition, antioxidant properties, and sensory attributes. As indicated by the results of studies, the incorporation of powdered fruits and fruit byproducts into cookies helps to increase their fiber and mineral content. Most importantly, it significantly enhances the nutraceutical potential of the products by adding phenolic compounds with high antioxidant capacity. Enriching shortbread cookies is a challenge for both researchers and producers because the type of fruit additive and level of substitution can diversely affect sensory attributes of cookies such as color, texture, flavor, and taste, which have an impact on consumer acceptability.


Asunto(s)
Antioxidantes , Frutas , Frutas/química , Antioxidantes/farmacología , Antioxidantes/análisis , Gusto , Manipulación de Alimentos , Fenoles/análisis
3.
Molecules ; 28(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894676

RESUMEN

Oat husk (hull) is a byproduct of oat processing that is rich in insoluble fiber. The aim of the study was to evaluate the effect of partially replacing wheat flour with oat husk (at levels of 0, 5, 10, 15, and 20 g/100 g) on the physicochemical properties and sensory acceptance of pasta. Additionally, UPLC-MS/MS analysis was performed to identify phenolic acids and flavonoid compounds, and the cooking properties of the pasta were evaluated. The test results indicate that oat husk significantly (p < 0.05) increased the ash and fiber contents in the pasta, while decreasing the protein and fat contents. Moreover, the redness and yellowness of both raw and cooked pasta increased, while lightness decreased as a result of pasta enrichment with oat husk. Oat husk also led to a decrease in the stretching force of cooked samples, although cooking loss increased significantly but did not exceed 8%. The contents of phenolics and antioxidant activity significantly increased with the incorporation of hull in pasta recipes. UPLC-MS/MS analysis showed that the enriched pasta was especially abundant in ferulic acid. Products with up to 10 g of husk/100 g of wheat flour showed good consumer acceptance. However, higher levels of this additive led to notably lower assessments, particularly in terms of pasta texture.


Asunto(s)
Harina , Triticum , Harina/análisis , Triticum/química , Avena , Cromatografía Liquida , Espectrometría de Masas en Tándem , Culinaria
4.
Molecules ; 27(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889368

RESUMEN

Food enrichment is commonly applied to increase the pro-health and dietary value of final products. This study aimed to evaluate how green leek powder (GL) added to semolina influenced the physicochemical, sensory, and cooking characteristics of the pasta. The pasta was prepared by partially substituting semolina with 0, 1, 2, 3, 4, and 5 g/100 g of GL. Then, the pasta samples were assessed for color, cooking properties, sensory features, mechanical properties, total phenolic content (TPC), and antioxidant activity (AA). The results indicated that GL significantly decreased the lightness and increased the yellowness of cooked pasta. The total color difference between the control pasta and enriched pasta samples ranged from 2.54 to 6.89 and 5.60 to 11.06 (for uncooked and cooked pasta, respectively). The addition of GL also caused an increase in the optimal cooking time and cooking loss. Moreover, a significant increase in stretching force was observed in cooked pasta. Sensory evaluation revealed that substitution of semolina with up to 2 g/100 g GL did not affect the smell, taste, and color of pasta. Most importantly, GL-enriched pasta was characterized by higher TPC and higher AA compared to the control samples. In summary, our results recommend partial replacement of semolina by GL (up to 3 g/100 g) in pasta production.


Asunto(s)
Harina , Cebollas , Culinaria/métodos , Harina/análisis , Polvos , Triticum/química
5.
Molecules ; 27(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630570

RESUMEN

Although the health benefits of cornflower extracts are known, their application in food production has not been widely investigated. This study assessed microencapsulated red powders (RP) prepared from the aqueous extract of blue cornflower petals. Microencapsulation was performed by freeze-drying using various stabilizers, such as maltodextrin, guar gum, and lecithin. The microencapsulated RP were characterized by spectral (FT-IR and FT-Raman), mineral, structural, and antioxidant analyses. The FT-IR and FT-Raman band related to guar gum, lecithin, and maltodextrin dominated over the band characteristic of anthocyanins present in the cornflower petal powders. The main difference observed in the FT-Raman spectra was attributed to a shift of bands which is reflection of appearance of flavium cation forms of anthocyanins. The microencapsulated RP had total phenolic content of 21.6-23.4 mg GAE/g DW and total flavonoid content of 5.0-5.23 mg QE/g. The ABTS radical scavenging activity of the tested powders ranged from 13.8 to 20.2 EC50 mg DW/mL. The reducing antioxidant power (RED) of the powders was estimated at between 31.0 and 38.7 EC50 mg DW/mL, and OH• scavenging activity ranged from 1.9 to 2.6 EC50 mg DW/mL. Microencapsulated cornflower RP can be valuable additives to food such as sweets, jellies, puddings, drinks, or dietary supplements.


Asunto(s)
Antocianinas , Antioxidantes , Antocianinas/química , Antioxidantes/química , Lecitinas , Polvos , Espectroscopía Infrarroja por Transformada de Fourier
6.
Molecules ; 27(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565971

RESUMEN

This study aimed to investigate the possibility of utilizing oat by-products for fiber preparation. Oat husk (OH) and oat bran (OB) were micronized and used to prepare a novel product rich in fiber and with enhanced antioxidant properties. The basic chemical composition and phenolic acid profile were determined in OH and OB. The antioxidant properties of OH and OB were also analyzed. The type and strength of interactions between the biologically active compounds from their mixtures were characterized by an isobolographic analysis. The analyses showed that the sum of phenolic acids was higher in OH than in OB. Ferulic acid was dominant in both OH and OB; however, its content in OH was over sixfold higher than that in OB. The results also suggested that both OH and OB can be used for preparing fiber with enhanced antioxidant properties. The optimal composition of the preparation, with 60-70% of OH and 30-40% of OB, allows for obtaining a product with 60-70% fiber and enhanced antioxidant activity due to bioactive substances and their synergistic effect. The resulting product can be a valuable additive to various food and dietary supplements.


Asunto(s)
Antioxidantes , Avena , Antioxidantes/química , Avena/química , Fibras de la Dieta/análisis , Estructuras de las Plantas/química
7.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807310

RESUMEN

This work aimed to evaluate the effect of partial replacement of semolina with 0, 1, 5, 10, 15, and 20% of ground buckwheat hull (BH) on the chemical composition, antioxidant properties, color, cooking characteristics, and sensory properties of wheat pasta. Pasta samples were prepared by dough lamination (tagliatelle shape) and dried at 55 °C until the moisture content was 11-12% (wet basis). Analyses of samples showed that the addition of BH caused an increase in fiber content in pasta from 4.31% (control pasta) to 14.15% (pasta with 20% of BH). Moreover, the brightness and yellowness of BH-enriched products were significantly decreased compared to the control sample, and the total color difference ranged from 23.84 (pasta with 1% of BH) to 32.56 (pasta with 15% BH). In addition, a decrease in optimal cooking time, as well as an increased weight index and cooking loss, was observed in BH-enriched pasta samples. Furthermore, BH-enriched cooked pasta had significantly higher total phenolic content and antioxidant activity but an unpleasant smell and taste, especially if the level of BH was higher than 10%.


Asunto(s)
Fagopyrum , Triticum , Culinaria , Fibras de la Dieta/análisis , Harina/análisis , Gusto , Triticum/química
8.
Molecules ; 27(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35268675

RESUMEN

BACKGROUND: This study aimed to determine the effect of poppy seed flour (PF) on the physicochemical and spectroscopic properties of low-carbohydrate, high-protein, and gluten-free bread. METHODS: The changes at the molecular level were assessed in bread using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Bread prepared with buckwheat, flaxseed, and pea protein was enriched with PF at a concentration of 5-15%. RESULTS: The results showed that the pasting parameters of dough supplemented with PF were significantly decreased compared to the control sample. The obtained bread samples were characterized by good quality and had 14.6% of carbohydrate, 16.3% of protein, 10.2% of fiber, and 4.0% of fat, with a caloric value of 177 kcal/100 g. The addition of PF had little influence on crumb mechanical properties. The ATR-FTIR analyses revealed spectral changes in the region related to protein and carbohydrate structures, as well as changes in band intensity characteristic of α-1,4-glycoside and α-1,6-glycoside bonds. The analyses showed that the main starch skeleton remained clearly visible. CONCLUSIONS: PF up to 10% can be potentially applied as a functional ingredient in the production of bread based on buckwheat and linseed flour. Such low-carbohydrate bread can be particularly useful to diabetics.


Asunto(s)
Harina
9.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500267

RESUMEN

Micronization is an emerging technology used in food production, in which the size of particles is reduced to microns in the processing of plant raw materials and by-products, thus making it an interesting research topic. Spinach stems are by-products of spinach leaf processing, but there is little information regarding their processing and possible reuse. In this study, wet and dry ball mill micronization, in combination with freeze drying, was used to process spinach stems and leaves to obtain functional powders. The color and particle size of the micronized spinach leaf and stem powders were evaluated. The antioxidant activity (AA) of the powders and phenolic compounds present in them were determined using GC-MS analysis. The results obtained showed that the dry micronization of leaves and stems resulted in smoother and brighter powders than wet micronization. Significantly smaller particle sizes were achieved using the dry micronization of the leaves and stems (Dv50 = 19.5 and 10.1 µm, respectively) rather than wet micronization (Dv50 = 84.6 and 112.5 µm, respectively). More phenolic compounds, such as o-coumaric acid and gallic acid, were extracted from the dry-micronized powders. The dry micronization of the stems significantly increased the total phenolic content, and the AA of these powders was also increased. These findings demonstrate that spinach leaves and stems subjected to dry micronization can be valuable functional components of food.


Asunto(s)
Antioxidantes , Spinacia oleracea , Antioxidantes/análisis , Cromatografía de Gases y Espectrometría de Masas , Polvos , Fenoles/análisis , Hojas de la Planta/química
10.
Molecules ; 26(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34946646

RESUMEN

Dried and crushed dandelion roots (Taraxacum officinale F. H. Wigg.) (TO) were used as a formulation additive (at the amount of 0, 1, 3, 4, 5, and 6 g 100 g-1 flour) to wheat bread. The farinographic properties of the dough and the physical and chemical properties of the bread were evaluated. It was found that the addition of dried flour caused a significant decrease in water absorption by the flour (1% and higher TO level), an increase in the development time (from 2% to 5% TO addition) and dough stability (3% and 4% TO level), and an increase in dough softening (4% and higher TO level). As the substitution of TO for wheat flour increased, there was a gradual decrease in loaf volume, an increase in specific weight and crumb hardness, and a darkening of the crumb color. The total polyphenol content increased linearly with the percentage increase of dried root additions TO from 0.290 to 0.394 mg GAE g-1 d.m., which translated into an increase in the antioxidant activity of the bread. It was found that dried crushed roots of Taraxacum officinale can be a recipe additive for wheat bread; however, due to their specific smell and bitter aftertaste, the level of this additive should not exceed 3 g 100 g-1 flour.


Asunto(s)
Pan/análisis , Harina/análisis , Calidad de los Alimentos , Raíces de Plantas/química , Taraxacum/química , Triticum
11.
Molecules ; 25(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142839

RESUMEN

Stratiotes aloides L. is common water plant in central Poland. Due to its expansive character, S. aloides L. can strongly affect the functioning of aquatic ecosystems. S. aloides L. was an important famine plant in central Poland. This plant was commonly collected and cooked until the turn of the 20th century. It has also been used to heal wounds, especially when these are made by an iron implement. The objective of the present work was to study the phenolic profile in the leaves and roots of S. aloides as well as their antioxidant potential and ability to inhibit lipoxygenase (LOX) in the light of their potential bioaccessibility. The dominant compound in its leaves was luteolin-7-O-hexoside-glucuronide (5.84 mg/g DW), whereas the dominant root component was chrysoeriol-7-O-hexoside-glucuronide (0.83 mg/g DW). Infusions from leaves, roots, and their 1:1 (v/v) mixture contained potentially bioaccessible antiradical compounds. S. aloides is a good source of water-extractable reductive compounds. Especially valuable are the leaves of this plant. The roots of S. aloides contained very active hydrophilic compounds able to chelate metal ions. However, their potential bioaccessibility was relatively low. The hydrophilic compounds from the leaves were the most effective XO inhibitors (EC50 = 9.91 mg DW/mL). The water-extractable compounds derived from the leaves and roots acted as uncompetitive LOX inhibitors.


Asunto(s)
Antioxidantes/química , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Tracheophyta/química , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Ecosistema , Glucurónidos/química , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Modelos Químicos , Fenoles/química , Fenoles/metabolismo , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Agua , Xantina Oxidasa/metabolismo
12.
Molecules ; 25(6)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178275

RESUMEN

Arnica montana L. is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are mainly related to the concentration and chemical composition of essential oils (EOs). Therefore, the objective of this study was to characterize the chemical composition of EOs derived from A. montana rhizomes and roots taking into account the age of the plants and to investigate the effect of the analyzed EOs on induction of apoptosis, necrosis, and autophagy in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines. Rhizomes and roots of mountain arnica were harvested at the end of the third and fourth vegetation periods. The chemical composition of essential oils was determined with the GC-MS technique. Among the 37 components of the essential oil of A. montana, 2,5-dimethoxy-p-cymene (46.47%-60.31%), 2,6-diisopropylanisole (14.48%-23.10%), thymol methyl ether (5.31%-17.79%), p-methoxyheptanophenone (5.07%-9.65%), and α-isocomene (0.68%-2.87%), were detected in the rhizomes and roots of the three-year-old plants and in the rhizomes and roots of the four-year-old plants. The plant part (rhizome, root) and plant age can be determinants of the essential oil composition and, consequently, their biological activity. The induction of apoptosis (but not autophagy nor necrosis) at a level of 28.5%-32.3% is a promising result, for which 2,5-dimethoxy-p-cymene, 2,6-diisopropylanisole, thymol methyl ether, and p-methoxyheptanophenone are probably mainly responsible. The present study is the first report on the anticancer activities of essential oils from A. montana rhizomes and roots.


Asunto(s)
Antineoplásicos/farmacología , Arnica/química , Glioblastoma/tratamiento farmacológico , Aceites Volátiles/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioblastoma/patología , Humanos , Aceites Volátiles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Rizoma/química
13.
J Food Sci Technol ; 56(9): 4311-4322, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31478001

RESUMEN

Modern nutritional trends and looking for functional food and dedicated products for various consumers are a source of inspiration for scientists to develop new pro-health supplemented foods with high quality. Therefore, the present study aimed to determine the selected properties of common wheat pasta fortified with dried Cistus incanus in amount from 1 to 5% as a replacement of wheat flour. Pasta was made with a spaghetti shape and dried. Supplemented pasta was tested for total phenolics content, the total activity against DPPH, the ability to neutralize free radicals to ABTS and the antioxidant capacity reduction power, using various extraction procedures. Selected physicochemical properties of pasta were evaluated: cooking time, cooking weight, cooking loss, hardness and color profile of dry and cooked pasta in CIE-Lab scale, as well as the sensory properties of supplemented products. The addition of C. incanus to fortify wheat pasta increased total phenolics content and antioxidant activity with some significant differences according to the extraction procedure used. Methanolic extraction was more efficient than buffer extraction. Increased addition of dry Cistus herb caused higher cooking weight, cooking loss and increased hardness of cooked pasta. Studies have shown that C. incanus addition had a slight effect on color change with the largest decrease in brightness, especially for cooked products. Finally, it was found that advisable application of C. incanus addition to achieve nutritionally improved composition of pasta should not exceed 3% due to the proper sensory characteristics.

14.
ScientificWorldJournal ; 2014: 782763, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24696660

RESUMEN

The aim of this study was to investigate and to compare the extractability, bioaccessibility, and bioavailability in vitro of antioxidative compounds from bark of selected Salix species: S. alba (SA), S. daphnoides (SD), S. purpurea (SP), and S. daphnoides x purpurea (SDP) hybrid willow clones originating from their natural habitats and cultivated on the sandy soil. The highest amount of phenolic glycosides was found in the bark of SDP and SD. The best source of phenolics was bark of SDP. The highest content of flavonoids were found in SD bark samples, whereas the highest concentration of bioaccessible and bioavailable phenolic acids was determined in SDP bark. Bark of all tested Salix species showed significant antiradical activity. This properties are strongly dependent on extraction system and genetic factors. Regardless of Salix genotypes, the lowest chelating power was found for chemically-extractable compounds. Bark of all Salix species contained ethanol-extractable compounds with reducing ability. Besides this, high bioaccessibility and bioavailability in vitro of Salix bark phytochemicals were found. Obtained results indicate that extracts from bark tested Salix genotypes can provide health promoting benefits to the consumers; however, this problem requires further study.


Asunto(s)
Suplementos Dietéticos , Corteza de la Planta/metabolismo , Salix/metabolismo , Técnicas In Vitro , Salix/clasificación , Especificidad de la Especie
15.
Food Technol Biotechnol ; 52(4): 430-438, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27904316

RESUMEN

In this study, a new application of pumpkin pulp in bread production is shown. The aim of this work is to determine the influence of the addition of fresh pumpkin pulp directly into wheat flour on physical, sensorial and biological properties of bread. The bioaccessibility of active compounds was also studied. An increase in the addition of pumpkin pulp from 5 to 20% (converted to dry matter) caused a decrease of bread volume and increase of crumb hardness and cohesiveness. The sensory characteristics of the bread showed that a partial replacement of wheat flour with up to 10% of pumpkin pulp gave satisfactory results. The taste, aroma and overall acceptability of control bread and bread containing 5 or 10% of pulp had the highest degree of liking. The addition of higher levels of pumpkin pulp caused an unpleasant aroma and taste. Pumpkin pulp is a good material to complement the bread with potentially bioaccessible phenolics (including flavonoids) and, especially, with peptides. The highest antioxidant activity was observed, in most cases, of the samples with added 10 and 15% of pumpkin pulp. The addition of the pulp significantly enriched the bread with potentially bioaccessible angiotensin-converting enzyme (ACE) inhibitors. The highest activity was determined in the bread with 15 and 20% pumpkin pulp. ACE inhibitors from the tested bread were highly bioaccessible in vitro. Pumpkin pulp seems to be a valuable source of active compounds to complement the wheat bread. Adding the pulp directly to the wheat flour gives satisfactory baking results and reduces the cost of production. Additionally, pumpkin pulp is sometimes treated as waste material after the acquisition of seeds, thus using it as bread supplement also has environmental and economic benefits. Key words: pumpkin, bread, texture, antioxidants, bioaccessibility in vitro, angiotensin-converting enzyme (ACE) inhibition.

16.
J Food Sci Technol ; 51(10): 2648-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25328207

RESUMEN

The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

17.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672916

RESUMEN

This study aimed to explore the feasibility of substituting wheat flour with varying levels (10%, 15%, 20%, and 25%) of flour derived from field bean, chickpea, lentil, and pea seeds. The investigation focused on assessing the physical properties of wheat dough and the physicochemical characteristics of bread samples. The addition of legume seed flours significantly influenced the dough's development time, particularly with chickpea flour causing a notable increase in this parameter. While dough stability was generally shorter for mixtures containing wheat flour and legume seed flour, chickpea flour was an exception, significantly prolonging dough stability time. Furthermore, the inclusion of legume flours resulted in increased protein, ash, fiber, fat, and phenolic contents in the enriched bread, while the carbohydrate content decreased. Additionally, the crumb exhibited increased redness and yellowness and decreased lightness due to the enrichment of the bread. Notably, the antioxidant activity of bread containing legume flour also increased, with the most significant increase observed when pea flour was utilized. Conversely, negative effects on bread volume, crumb density, and texture parameters were noted with the incorporation of legume additives. Taking into consideration the results of both physicochemical analyses and sensory evaluation, it is recommended that the incorporation of the specified legume flours should not exceed 15% in relation to the quantity of wheat flour used.

18.
Materials (Basel) ; 17(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893765

RESUMEN

The purpose of this study was to investigate the effect of micronization on the characteristics of black cumin pressing waste material. The basic composition, amino acid, and fatty acid content of the raw material-specifically, black cumin pressing waste material-were determined. The samples were micronized in a planetary ball mill for periods ranging from 0 to 20 min. The particle sizes of micronized samples of black cumin pressing waste material were then examined using a laser analyzer, the Mastersizer 3000. The structures of the produced micronized powders was examined by X-ray diffraction. Additionally, the FTIR (Fourier-transform infrared) spectra of the micronized samples were recorded. The measurement of phenolic and antiradical properties was conducted both before and after in vitro digestion, and the evaluation of protein digestibility and trypsin inhibition was also conducted. The test results, including material properties, suggest that micronization for 10 min dramatically reduced particle diameters (d50) from 374.7 to 88.7 µm, whereas after 20 min, d50 decreased to only 64.5 µm. The results obtained using FTIR spectroscopy revealed alterations, especially in terms of intensity and, to a lesser extent, the shapes of the bands, indicating a significant impact on the molecular properties of the tested samples. X-ray diffraction profiles revealed that the internal structures of all powders are amorphous, and micronization methods have no effect on the internal structures of powders derived from black cumin pressing waste. Biochemical analyses revealed the viability of utilizing micronized powders from black cumin pressing waste materials as beneficial food additives, since micronization increased total phenolic extraction and antiradical activity.

19.
Foods ; 12(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37685252

RESUMEN

Walnut flour (WF) is a nutrient-rich source that can be used as an alternative for individuals on a gluten-free diet. This study aimed to assess the physical, chemical, and sensory changes in low-carbohydrate bread when supplemented with WF. Molecular-level changes were also examined using ATR-FTIR spectra. The bread recipe, containing buckwheat and flaxseed, was enriched with WF at levels ranging from 5% to 20%. The addition of WF resulted in increased loaf volume and decreased baking loss. Enriched bread samples showed higher protein content, while fat and available carbohydrate content decreased. Additionally, WF incorporation led to a decrease in crumb brightness and an increase in redness (from 23.1 to 25.4) and yellowness (from 23.8 to 26.7). WF also increased crumb hardness and chewiness. Moreover, the tested additives primarily influenced the intensity of FTIR spectra, indicating changes in protein, carbohydrate, and fat content, with increased band intensity observed in the protein region. We particularly recommend bread with a WF content of 15%. This type of bread is characterized by high consumer acceptance. Furthermore, compared to bread without the addition of WF, it has a higher content of phenolic compounds, protein, and fat by approximately 40%, 8%, and 4%, respectively. The antioxidant activity of this bread, determined using the ABTS and DPPH methods, is also significantly higher compared to the control bread.

20.
Foods ; 12(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37761072

RESUMEN

The objective of this study was to assess the impact of inulin and pectin, wherein pectin replaced inulin with weight ranging from 2% to 8%, as wall materials on various aspects: bioactive component content, antioxidant and anti-inflammatory properties, bioavailability, powder recovery during the drying process, and selected physical characteristics of powders derived from Malvae arboreae flos aqueous extracts obtained through spray drying. Powders containing a soluble fraction of fiber demonstrated a recovery efficiency of over 50% during drying, along with low moisture content, water activity, and hygroscopicity, coupled with high solubility. The incorporation of pectin up to 8% did not significantly alter the color profile of the powders. However, at levels of 4% to 8% pectin, concave distortions and particle morphology cracks became noticeable, along with the potential to form agglomerates (evident when the span index ranged between 5.11 and 14.51). The substitution of inulin with pectin led to higher total contents of flavonoids (from 1.31% to 49.57% before digestion, and from 18.92% to 36.48% after digestion) and anthocyanins (from 45.79% to 78.56% before digestion, and from 65.45% to 521.81% after digestion) compared to samples containing only inulin as a carrier. Bioacceptability values exceeding 100% indicated effective preservation of compounds responsible for ferric-reducing antioxidant power, as well as the inhibition of xanthine oxidase and cyclooxygenase-2 across all samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA