Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Bioanal Chem ; 416(11): 2683-2689, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38206347

RESUMEN

Exposure to particles from air pollution has been associated with kidney disease; however, the underlying biological mechanisms are incompletely understood. Inhaled particles can gain access to the circulation and, depending on their size, pass into urine, raising the possibility that particles may also sequester in the kidney and directly alter renal function. This study optimised an inductively coupled plasma mass spectrometry (ICP-MS) method to investigate the size dependency of particle accumulation in the kidneys of mice following pulmonary instillation (0.8 mg in total over 4 weeks) to gold nanoparticles (2, 3-4, 7-8, 14 or 40 nm or saline control). Due to the smallest particle sizes being below the limit of detection in single particle mode, ICP-MS was operated in total quantification mode. Gold was detected in all matrices of interest (blood, urine and kidney) from animals treated with all sizes of gold nanoparticles, at orders of magnitude higher than the methodological limit of detection in biological matrices (0.013 ng/mL). A size-dependent effect was observed, with smaller particles leading to greater levels of accumulation in tissues. This study highlights the value of a robust and reliable method by ICP-MS to detect extremely low levels of gold in biological samples for indirect particle tracing. The finding that nano-sized particles translocate from the lung to the kidney may provide a biological explanation for the associations between air pollution and kidney disease.


Asunto(s)
Contaminación del Aire , Enfermedades Renales , Nanopartículas del Metal , Nanopartículas , Ratones , Animales , Oro/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Espectrometría de Masas
2.
Nature ; 532(7599): 375-9, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27074515

RESUMEN

Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Metabolismo Energético , Magnesio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Chlorophyta/citología , Chlorophyta/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
3.
Front Microbiol ; 12: 641387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868198

RESUMEN

As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.

4.
Nat Commun ; 11(1): 5523, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173035

RESUMEN

Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Exobiología , Gravitación , Metales de Tierras Raras/metabolismo , Bacillus subtilis/metabolismo , Cupriavidus/metabolismo , Microbiología Industrial , Marte , Minería , Luna , Silicatos , Sphingomonas/metabolismo , Ingravidez
5.
Water Res ; 123: 569-577, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28704772

RESUMEN

Red mud is a by-product of alumina production. Little is known about the long-term fate of red mud constituents in fresh waters or of the processes regulating recovery of fresh waters following pollution control. In 1983, red mud leachate was diverted away from Kinghorn Loch, UK, after many years of polluting this shallow and monomictic lake. We hypothesised that the redox-sensitive constituents of red mud leachate, phosphorus (P), arsenic (As) and vanadium (V), would persist in the Kinghorn Loch for many years following pollution control as a result of cycling between the lake bed sediment and the overlying water column. To test this hypothesis, we conducted a 12-month field campaign in Kinghorn Loch between May 2012 and April 2013 to quantify the seasonal cycling of P, As, and V in relation to environmental conditions (e.g., dissolved oxygen (DO) concentration, pH, redox chemistry and temperature) in the lake surface and bottom waters. To confirm the mechanisms for P, As and V release, a sediment core incubation experiment was conducted using lake sediment sampled in July 2012, in which DO concentrations were manipulated to create either oxic or anoxic conditions similar to the bed conditions found in the lake. The effects on P, As, and V concentrations and species in the water column were measured daily over an eight-day incubation period. Phosphate (PO4-P) and dissolved As concentrations were significantly higher in the bottom waters (75.9 ± 30.2 µg L-1 and 23.5 ± 1.83 µg L-1, respectively) than in the surface waters (12.9 ± 1.50 µg L-1 and 14.1 ± 2.20 µg L-1, respectively) in Kinghorn Loch. Sediment release of As and P under anoxic conditions was confirmed by the incubation experiment and by the significant negative correlations between DO and P and As concentrations in the bottom waters of the lake. In contrast, the highest dissolved V concentrations occurred in the bottom waters of Kinghorn Loch under oxic conditions (15.0 ± 3.35 µg L-1), with the release from the bed sediment apparently being controlled by a combination of competitive ion concentrations, pH and redox conditions.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Fósforo
6.
Sci Total Environ ; 544: 730-43, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26674702

RESUMEN

Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon (206)Pb/(207)Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon (206)Pb/(207)Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of (208)Pb/(207)Pb vs. (208)Pb/(206)Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The (206)Pb/(207)Pb ratio of the organic top horizon in (ii) was unrelated to the (206)Pb/(207)Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the (206)Pb/(207)Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m(-2) were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean (206)Pb/(207)Pb ratio~1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column.

7.
Metallomics ; 3(12): 1310-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21993954

RESUMEN

Production of ATP by the glycolytic pathway in the mammalian pathogenic stage of protists from the genus Trypanosoma is required for the survival of the parasites. Cofactor-independent phosphoglycerate mutase (iPGAM) is particularly attractive as a drug target because it shows no similarity to the corresponding enzyme in humans, and has also been genetically validated as a target by RNAi experiments. It has previously been shown that trypanosomatid iPGAMs require Co(2+) to reach maximal activity, but the biologically relevant metal has remained unclear. In this paper the metal content in the cytosol of procyclic and bloodstream-form T. brucei (analysed by inductively coupled plasma-optical emission spectroscopy) shows that Mg(2+), Zn(2+) and Fe(2+) were the most abundant, whereas Co(2+) was below the limit of detection (<0.035 µM). The low concentration indicates that Co(2+) is unlikely to be the biologically relevant metal, but that instead, Mg(2+) and/or Zn(2+) may assume this role. Results from metal analysis of purified Leishmania mexicana iPGAM by inductively coupled plasma-mass spectrometry also show high concentrations of Mg(2+) and Zn(2+), and are consistent with this proposal. Our data suggest that in vivo cellular conditions lacking Co(2+) are unable to support the maximal activity of iPGAM, but instead maintain its activity at a relatively low level by using Mg(2+) and/or Zn(2+). The physiological significance of these observations is being pursued by structural, biochemical and biophysical studies.


Asunto(s)
Cobalto/metabolismo , Fosfoglicerato Mutasa/química , Fosfoglicerato Mutasa/metabolismo , Trypanosoma brucei brucei/enzimología , Cobalto/análisis , Citosol/enzimología , Hierro/análisis , Hierro/metabolismo , Magnesio/análisis , Magnesio/metabolismo , Espectrometría de Masas , Modelos Moleculares , Fosfoglicerato Mutasa/aislamiento & purificación , Trypanosoma brucei brucei/química , Zinc/análisis , Zinc/metabolismo
8.
Sci Total Environ ; 408(17): 3704-10, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20427077

RESUMEN

The lead concentrations and isotopic ratios (206Pb/207Pb, 208Pb/206Pb, 208Pb/207Pb) of 31 rainwater (September 2006-December 2007) and 11 surface vegetation (moss, lichen, heather) samples (October 2007) from the rural upland catchment of Glensaugh in northeast Scotland and of nine bark samples (October 2007) from trees, predominantly Scots pine, in or near Glensaugh were determined. The mean 206Pb/207Pb ratios for rainwater in 2006 and 2007 were similar to those previously determined for 2000 to 2003 at Glensaugh, yielding an average mean annual value of 1.151+/-0.005 (+/-1 SD) for the period from 2000, when an outright ban on leaded petrol came into force in the UK, to 2007. The mean 206Pb/207Pb ratio (1.146+/-0.004; n=7) for surface vegetation near the top (430-450 m) of the catchment was not significantly different (Student's t test) from that of rainwater (1.148+/-0.017; n=24) collected over the 12-month period prior to vegetation sampling, but both were significantly different, at the 0.1% (i.e. p<0.001) and 1% (p<0.01) level, respectively, from the corresponding mean value (1.134+/-0.006; n=9) for the outermost layer of tree bark. When considered in conjunction with similar direct evidence for 2002 and indirect evidence (e.g. grass, atmospheric particulates, dated peat) for recent decades in the Glensaugh area, these findings confirm that the lead isotopic composition of surface vegetation, including that of suitably located moss, reflects that of the atmosphere while that of the outermost layer of Scots pine bark is affected by non-contemporaneous lead. The nature and relative extent of the different contributory sources of lead to the current UK atmosphere in the era of unleaded petrol, however, are presently not well characterised on the basis of lead isotopic measurements.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Plomo/análisis , Corteza de la Planta/metabolismo , Plantas/metabolismo , Lluvia/química , Calluna/metabolismo , Contaminantes Ambientales/metabolismo , Isótopos/análisis , Plomo/metabolismo , Líquenes/metabolismo , Escocia , Sphagnopsida/metabolismo
9.
Environ Sci Technol ; 36(2): 152-7, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11827048

RESUMEN

The analysis of almost 200 Scottish Sphagnum moss samples collected over the past 170 years has revealed trends in the isotopic composition of lead similar to those previously established for dated Scottish lake sediments and peat bogs, lending credibility to these proxy records of atmospheric lead contamination and deposition. The effect of temporal variations in contributions from sources such as smelting of indigenous lead ores (206Pb/207Pb approximately 1.16-1.18), coal combustion (206Pb/207Pb approximately 1.17-1.19), and the use of imported Australian lead (206Pb/207Pb approximately 1.04) was clearly seen in the Scottish moss 206Pb/207Pb record. This showed some differences from the corresponding archival herbage record for the south of England, where the initial influence of Australian lead occurred earlier, at the end of the 19th century. A significant decline from a 206Pb/ 207Pb value of approximately 1.17 in the Scottish moss record began in the 1920s and continued until the 1980s (206Pb/207Pb approximately 1.12). The success of measures to reduce lead emissions to the atmosphere over the past 20 years in the U.K., in particular from petrol-engined vehicles using alkyl lead additives manufactured primarily from Australian lead, is evident in both the increasing 206Pb/207Pb ratio and falling lead concentration data for Scottish moss.


Asunto(s)
Bryopsida/química , Monitoreo del Ambiente/historia , Contaminantes Ambientales/historia , Radioisótopos de Plomo/historia , Contaminantes Ambientales/análisis , Historia del Siglo XIX , Historia del Siglo XX , Radioisótopos de Plomo/análisis , Escocia , Emisiones de Vehículos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA