Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 163(4): 934-46, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544940

RESUMEN

Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to 10-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes.


Asunto(s)
Drosophila melanogaster/genética , Cromosomas Politénicos/química , Animales , Núcleo Celular/química , Núcleo Celular/genética , Puffs Cromosómicos , Diploidia , Drosophila melanogaster/química , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Técnicas Genéticas , Larva/química
2.
Mol Cell ; 78(1): 112-126.e12, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243828

RESUMEN

Delineating how chromosomes fold at length scales beyond one megabase remains obscure relative to smaller-scale folding into TADs, loops, and nucleosomes. We find that rather than simply unfolding chromatin, histone hyperacetylation results in interactions between distant genomic loci separated by tens to hundreds of megabases, even in the absence of transcription. These hyperacetylated "megadomains" are formed by the BRD4-NUT fusion oncoprotein, interact both within and between chromosomes, and form a specific nuclear subcompartment that has elevated gene activity with respect to other subcompartments. Pharmacological degradation of BRD4-NUT results in collapse of megadomains and attenuation of the interactions between them. In contrast, these interactions persist and contacts between newly acetylated regions are formed after inhibiting RNA polymerase II initiation. Our structure-function approach thus reveals that broad chromatin domains of identical biochemical composition, independent of transcription, form nuclear subcompartments, and also indicates the potential of altering chromosome structure for treating human disease.


Asunto(s)
Núcleo Celular/genética , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Acetilación , Línea Celular , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/efectos de los fármacos , Cromosomas de los Mamíferos/metabolismo , Expresión Génica , Humanos , Masculino , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo
3.
EMBO J ; 40(24): e108307, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34786730

RESUMEN

Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.


Asunto(s)
Autoantígenos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Células HEK293 , Células HeLa , Código de Histonas , Histonas/química , Humanos , Nucleosomas/metabolismo , Dominios Proteicos
4.
Trends Biochem Sci ; 43(6): 469-478, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29685368

RESUMEN

Chromosomes are folded and compacted in interphase nuclei, but the molecular basis of this folding is poorly understood. Chromosome conformation capture methods, such as Hi-C, combine chemical crosslinking of chromatin with fragmentation, DNA ligation, and high-throughput DNA sequencing to detect neighboring loci genome-wide. Hi-C has revealed the segregation of chromatin into active and inactive compartments and the folding of DNA into self-associating domains and loops. Depletion of CTCF, cohesin, or cohesin-associated proteins was recently shown to affect the majority of domains and loops in a manner that is consistent with a model of DNA folding through extrusion of chromatin loops. Compartmentation was not dependent on CTCF or cohesin. Hi-C contact maps represent the superimposition of CTCF/cohesin-dependent and -independent folding states.


Asunto(s)
Mapeo Cromosómico , Cromosomas/química , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Conformación de Ácido Nucleico
5.
Proc Natl Acad Sci U S A ; 114(33): 8764-8769, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28765367

RESUMEN

The locations of chromatin loops in Drosophila were determined by Hi-C (chemical cross-linking, restriction digestion, ligation, and high-throughput DNA sequencing). Whereas most loop boundaries or "anchors" are associated with CTCF protein in mammals, loop anchors in Drosophila were found most often in association with the polycomb group (PcG) protein Polycomb (Pc), a subunit of polycomb repressive complex 1 (PRC1). Loops were frequently located within domains of PcG-repressed chromatin. Promoters located at PRC1 loop anchors regulate some of the most important developmental genes and are less likely to be expressed than those not at PRC1 loop anchors. Although DNA looping has most commonly been associated with enhancer-promoter communication, our results indicate that loops are also associated with gene repression.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Complejo Represivo Polycomb 1/genética , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética
7.
Cancer Res ; 83(23): 3846-3860, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819236

RESUMEN

NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE: The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645799

RESUMEN

NUT carcinoma (NC) is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of pro-growth genes. BET bromodomain inhibitors (BETi) impede BRD4-NUT's ability to activate genes and are thus a promising treatment but limited as monotherapy. The role of gene repression in NC is unknown. Here, we demonstrate that EZH2, which silences genes through establishment of repressive chromatin, is a dependency in NC. Inhibition of EZH2 with the clinical compound tazemetostat (taz) potently blocked growth of NC cells. Epigenetic and transcriptomic analysis revealed that taz reversed the EZH2-specific H3K27me3 silencing mark, and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4- NUT-regulated genes. CDKN2A was identified as the only gene amongst all taz-derepressed genes to confer resistance to taz in a CRISPR-Cas9 screen. Combined EZH2 inhibition and BET inhibition synergized to downregulate cell proliferation genes resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In pre-clinical models, combined taz and BETi synergistically blocked growth and prolonged survival of NC-xenografted mice, with all mice cured in one cohort. STATEMENT OF SIGNIFICANCE: Identification of EZH2 as a dependency in NC substantiates the reliance of NC tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary chromatin regulatory pathways to maintain NC growth. In particular, repression of CDKN2A expression by EZH2 provides a mechanistic rationale for combining EZH2i with BETi for the clinical treatment of NC.

9.
Cancer Res ; 83(23): 3956-3973, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747726

RESUMEN

NUT carcinoma is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of progrowth genes. BET bromodomain inhibitors (BETi) are a promising treatment for NUT carcinoma that can impede BRD4-NUT's ability to activate genes, but the efficacy of BETi as monotherapy is limited. Here, we demonstrated that enhancer of zeste homolog 2 (EZH2), which silences genes through establishment of repressive chromatin, is a dependency in NUT carcinoma. Inhibition of EZH2 with the clinical compound tazemetostat potently blocked growth of NUT carcinoma cells. Epigenetic and transcriptomic analysis revealed that tazemetostat reversed the EZH2-specific H3K27me3 silencing mark and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4-NUT-regulated genes. Indeed, H3K27me3 and H3K27ac domains were found to be mutually exclusive in NUT carcinoma cells. CDKN2A was identified as the only gene among all tazemetostat-derepressed genes to confer resistance to tazemetostat in a CRISPR-Cas9 screen. Combined inhibition of EZH2 and BET synergized to downregulate cell proliferation genes, resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In preclinical models, combined tazemetostat and BETi synergistically blocked tumor growth and prolonged survival of NUT carcinoma-xenografted mice, with complete remission without relapse in one cohort. Identification of EZH2 as a dependency in NUT carcinoma substantiates the reliance of NUT carcinoma tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary, chromatin regulatory pathways to maintain NUT carcinoma growth. SIGNIFICANCE: Repression of tumor suppressor genes, including CDKN2A, by EZH2 provides a mechanistic rationale for combining EZH2 and BET inhibitors for the clinical treatment of NUT carcinoma. See related commentary by Kazansky and Kentsis, p. 3827.


Asunto(s)
Carcinoma , Proteínas Nucleares , Animales , Humanos , Ratones , Carcinoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Genes Supresores de Tumor , Histonas/metabolismo , Recurrencia Local de Neoplasia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Oncogene ; 40(8): 1396-1408, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33452461

RESUMEN

NUT carcinoma (NC) is an extremely aggressive squamous cancer with no effective therapy. NC is driven, most commonly, by the BRD4-NUT fusion oncoprotein. BRD4-NUT combines the chromatin-binding bromo- and extraterminal domain-containing (BET) protein, BRD4, with an unstructured, poorly understood protein, NUT, which recruits and activates the histone acetyltransferase p300. Recruitment of p300 to chromatin by BRD4 is believed to lead to the formation of hyperacetylated nuclear foci, as seen by immunofluorescence. BRD4-NUT nuclear foci correspond with massive contiguous regions of chromatin co-enriched with BRD4-NUT, p300, and acetylated histones, termed "megadomains" (MD). Megadomains stretch for as long as 2 MB. Proteomics has defined a BRD4-NUT chromatin complex in which members that associate with BRD4 also exist as rare NUT-fusion partners. This suggests that the common pathogenic denominator is the presence of both BRD4 and NUT, and that the function of BRD4-NUT may mimic that of wild-type BRD4. If so, then MDs may function as massive super-enhancers, activating transcription in a BET-dependent manner. Common targets of MDs across multiple NCs and tissues are three stem cell-related transcription factors frequently implicated in cancer: MYC, SOX2, and TP63. Recently, MDs were found to form a novel nuclear sub-compartment, called subcompartment M (subM), where MD-MD interactions occur both intra- and inter-chromosomally. Included in subM are MYC, SOX2, and TP63. Here we explore the possibility that if MDs are simply large super-enhancers, subM may exist in other cell systems, with broad implications for how 3D organization of the genome may function in gene regulation and maintenance of cell identity. Finally, we discuss how our knowledge of BRD4-NUT function has been leveraged for the therapeutic development of first-in-class BET inhibitors and other targeted strategies.


Asunto(s)
Carcinoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética , Carcinoma/patología , Línea Celular Tumoral , Cromatina/genética , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Proteínas Supresoras de Tumor/genética
11.
Biochemistry ; 49(23): 4841-51, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20450160

RESUMEN

Gamma-aminobutyric acid type A receptors (GABA(A) receptors) are ligand-gated chloride channels that play a central role in signal transmission within the mammalian central nervous system. Compounds that modulate specific GABA(A) receptor subtypes containing the delta-subunit are scarce but would be valuable research tools and starting points for potential therapeutic agents. Here we report a class of dihydropyrimidinone (DHPM) heterocycles that preferentially potentiate peak currents of recombinant GABA(A) receptor subtypes containing the delta-subunit expressed in HEK293T cells. Using the three-component Biginelli reaction, 13 DHPMs with structural features similar to those of the barbiturate phenobarbital were synthesized; one DHPM used (monastrol) is commercially available. An up to approximately 3-fold increase in the current from recombinant alpha1beta2delta receptors was observed with the DHPM compound JM-II-43A or monastrol when co-applied with saturating GABA concentrations, similar to the current potentiation observed with the nonselective potentiating compounds phenobarbital and tracazolate. No agonist activity was observed for the DHPMs at the concentrations tested. A kinetic model was used in conjunction with dose-dependent measurements to calculate apparent dissociation constant values for JM-II-43A (400 muM) and monastrol (200 microM) at saturating GABA concentrations. We examined recombinant receptors composed of combinations of subunits alpha1, alpha4, alpha5, alpha6, beta2, beta3, gamma2L, and delta with JM-II-43A to demonstrate the preference for potentiation of delta-subunit-containing receptors. Lastly, reduced currents from receptors containing the mutated delta(E177A) subunit, described by Dibbens et al. [(2004) Hum. Mol. Genet. 13, 1315-1319] as a heritable susceptibility allele for generalized epilepsy with febrile seizures plus, are also potentiated by these DHPMs.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Variación Genética , Subunidades de Proteína/metabolismo , Pirimidinonas/farmacología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Alanina/genética , Regulación Alostérica/genética , Línea Celular , Sinergismo Farmacológico , Ácido Glutámico/genética , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirimidinas/farmacología , Tionas/farmacología
12.
Genome Biol ; 21(1): 247, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933554

RESUMEN

BACKGROUND: The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, hitherto there is no comprehensive survey of genome-wide CTCF binding patterns across different human cancers. RESULTS: To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions, partially with DNA methylation changes, and rarely with sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events exhibit enhancer activities and are induced by oncogenic transcription factors. We validate these findings in T cell acute lymphoblastic leukemia cell lines and patient samples and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. CONCLUSIONS: Specific CTCF binding events occur in human cancers. Cancer-specific CTCF binding can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Metilación de ADN , Humanos , Oncogenes , Receptor Notch1/metabolismo
13.
J Mol Biol ; 368(3): 870-83, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17382344

RESUMEN

Kinetically stable proteins are unique in that their stability is determined solely by kinetic barriers rather than by thermodynamic equilibria. To better understand how kinetic stability promotes protein survival under extreme environmental conditions, we analyzed the unfolding behavior and determined the structure of Nocardiopsis alba Protease A (NAPase), an acid-resistant, kinetically stable protease, and compared these results with a neutrophilic homolog, alpha-lytic protease (alphaLP). Although NAPase and alphaLP have the same number of acid-titratable residues, kinetic studies revealed that the height of the unfolding free energy barrier for NAPase is less sensitive to acid than that of alphaLP, thereby accounting for NAPase's improved tolerance of low pH. A comparison of the alphaLP and NAPase structures identified multiple salt-bridges in the domain interface of alphaLP that were relocated to outer regions of NAPase, suggesting a novel mechanism of acid stability in which acid-sensitive electrostatic interactions are rearranged to similarly affect the energetics of both the native state and the unfolding transition state. An acid-stable variant of alphaLP in which a single interdomain salt-bridge is replaced with a corresponding intradomain NAPase salt-bridge shows a dramatic >15-fold increase in acid resistance, providing further evidence for this hypothesis. These observations also led to a general model of the unfolding transition state structure for alphaLP protease family members in which the two domains separate from each other while remaining relatively intact themselves. These results illustrate the remarkable utility of kinetic stability as an evolutionary tool for developing longevity over a broad range of harsh conditions.


Asunto(s)
Actinomycetales/fisiología , Proteínas Bacterianas/síntesis química , Modelos Moleculares , Péptido Hidrolasas/química , Serina Endopeptidasas/química , Actinomycetales/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Mutación , Péptido Hidrolasas/genética , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Temperatura
14.
Nat Genet ; 54(4): 370-371, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35410382
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA