Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Math Biol ; 80(4): 926-944, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29498016

RESUMEN

Understanding the complexities of environmental issues requires individuals to bring together ideas and data from different disciplines, including ecology and mathematics. With funding from the national science foundation (NSF), scientists from the University of Wisconsin-La Crosse and the US geological survey held a research experience for undergraduates (REU) program in the summer of 2016. The goals of the program were to expose students to open problems in the area of mathematical ecology, motivate students to pursue STEM-related positions, and to prepare students for research within interdisciplinary, collaborative settings. Based on backgrounds and interests, eight students were selected to participate in one of two research projects: wind energy and wildlife conservation or the establishment and spread of waterfowl diseases. Each research program was overseen by a mathematician and a biologist. Regardless of the research focus, the program first began with formal lectures to provide students with foundational knowledge followed by student-driven research projects. Throughout this period, student teams worked in close association with their mentors to create, parameterize and evaluate ecological models to better understand their systems of interest. Students then disseminated their results at local, regional, and international meetings and through publications (one in press and one in progress). Direct and indirect measures of student development revealed that our REU program fostered a deep appreciation for and understanding of mathematical ecology. Finally, the program allowed students to gain experiences working with individuals with different backgrounds and perspectives. Taken together, this REU program allowed us to successfully excite, motivate and prepare students for future positions in the area of mathematical biology, and because of this it can be used as a model for interdisciplinary programs at other institutions.


Asunto(s)
Ecología/educación , Matemática/educación , Animales , Enfermedades de las Aves/transmisión , Conservación de los Recursos Naturales , Curriculum , Humanos , Energía Renovable , Investigación , Estudiantes , Universidades , Viento , Wisconsin
2.
Am Nat ; 190(4): 570-583, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28937813

RESUMEN

Biological populations are strongly influenced by random variations in their environment, which are often autocorrelated in time. For disturbance specialist plant populations, the frequency and intensity of environmental stochasticity (via disturbances) can drive the qualitative nature of their population dynamics. In this article, we extended our earlier model to explore the effect of temporally autocorrelated disturbances on population persistence. In our earlier work, we only assumed disturbances were independent and identically distributed in time. We proved that the plant seed bank population converges in distribution, and we showed that the mean and variance in seed bank population size were both increasing functions of the autocorrelation coefficient for all parameter values considered, but the interplay between increasing population size and increasing variability caused interesting relationships between quasi-extinction probability and autocorrelation. For example, for populations with low seed survival, fecundity, and disturbance frequency, increasingly positive autocorrelated disturbances decreased quasi-extinction probability. Higher disturbance frequency coupled with low seed survival and fecundity caused a nonmontone relationship between autocorrelation and quasi-extinction, where increasingly positive autocorrelations eventually caused an increase in quasi-extinction probability. For higher seed survival, fecundity, and/or disturbance frequency, quasi-extinction probability was generally a monotonically increasing function of the autocorrelation coefficient.


Asunto(s)
Ambiente , Plantas , Banco de Semillas , Modelos Biológicos , Densidad de Población , Dinámica Poblacional
3.
Theor Popul Biol ; 97: 49-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25174884

RESUMEN

When vital rates depend on population structure (e.g., relative frequencies of males or females), an important question is how the long-term population growth rate λ responds to changes in rates. For instance, availability of mates may depend on the sex ratio of the population and hence reproductive rates could be frequency-dependent. In such cases change in any vital rate alters the structure, which in turn, affect frequency-dependent rates. We show that the elasticity of λ to a rate is the sum of (i) the effect of the linear change in the rate and (ii) the effect of nonlinear changes in frequency-dependent rates. The first component is always positive and is the classical elasticity in density-independent models obtained directly from the population projection matrix. The second component can be positive or negative and is absent in density-independent models. We explicitly express each component of the elasticity as a function of vital rates, eigenvalues and eigenvectors of the population projection matrix. We apply this result to a two-sex model, where male and female fertilities depend on adult sex ratio α (ratio of females to males) and the mating system (e.g., polygyny) through a harmonic mating function. We show that the nonlinear component of elasticity to a survival rate is negligible only when the average number of mates (per male) is close to α. In a strictly monogamous species, elasticity to female survival is larger than elasticity to male survival when α<1 (less females). In a polygynous species, elasticity to female survival can be larger than that of male survival even when sex ratio is female biased. Our results show how demography and mating system together determine the response to selection on sex-specific vital rates.


Asunto(s)
Frecuencia de los Genes , Genética de Población , Modelos Biológicos , Razón de Masculinidad , Conducta Sexual Animal , Animales , Femenino , Masculino , Crecimiento Demográfico
4.
Theor Popul Biol ; 92: 88-96, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24373938

RESUMEN

Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii).


Asunto(s)
Migración Animal , Modelos Teóricos , Salmón/fisiología , Animales , Dinámica Poblacional
5.
Bull Math Biol ; 76(7): 1809-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24916367

RESUMEN

In many plant species dormant seeds can persist in the soil for one to several years. The formation of these seed banks is especially important for disturbance specialist plants, as seeds of these species germinate only in disturbed soil. Seed movement caused by disturbances affects the survival and germination probability of seeds in the seed bank, which subsequently affect population dynamics. In this paper, we develop a stochastic integral projection model for a general disturbance specialist plant-seed bank population that takes into account both the frequency and intensity of random disturbances, as well as vertical seed movement and density-dependent seedling establishment. We show that the probability measures associated with the plant-seed bank population converge weakly to a unique measure, independent of initial population. We also show that the population either persists with probability one or goes extinct with probability one, and provides a sharp criteria for this dichotomy. We apply our results to an example motivated by wild sunflower (Helianthus annuus) populations, and explore how the presence or absence of a "storage effect" impacts how a population responds to different disturbance scenarios.


Asunto(s)
Ecosistema , Modelos Teóricos , Semillas/crecimiento & desarrollo , Helianthus/crecimiento & desarrollo
6.
J Math Biol ; 69(1): 1-37, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23712394

RESUMEN

Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank.


Asunto(s)
Asteraceae , Ecosistema , Modelos Biológicos , Semillas
7.
Am Nat ; 182(2): 180-90, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23852353

RESUMEN

Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.


Asunto(s)
Ecosistema , Modelos Biológicos , Semillas , Extinción Biológica , Germinación , Plantas , Dinámica Poblacional
8.
Math Biosci ; 282: 34-45, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27712991

RESUMEN

Sensitivity and elasticity analyzes have become central to the analysis of models in population biology and ecology. While much work has been done applying sensitivity and elasticity analysis to study density-independent (linear) matrix and integral projection models, little work has been done to study the sensitivity and elasticity of density-dependent models, especially integral projection models. In this paper we derive sensitivity and elasticity formulas for the equilibrium population n* of a structured population modeled by a Lur'e system, which consists of a linear system plus a nonlinearity modeling density-dependent fecundity. Sensitivity and elasticity formulas are easy to interpret ecologically, and we apply these formulas to published models for Chinook Salmon and Platte thistle (Cirsium canescens). In the C. canescens example we show that models with identical equilibrium populations can have sensitivities that are an order-of-magnitude apart, depending on the functional form for the nonlinearity.


Asunto(s)
Modelos Teóricos , Dinámica Poblacional , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA