Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 40(4): 509-20, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21095582

RESUMEN

The mTOR complex-1 (mTORC1) coordinates cell growth and metabolism, acting as a restriction point under stress conditions such as low oxygen tension (hypoxia). Hypoxia suppresses mTORC1 signaling. However, the signals by which hypoxia suppresses mTORC1 are only partially understood, and a direct link between hypoxia-driven physiological stress and the regulation of mTORC1 signaling is unknown. Here we show that hypoxia results in ataxia telangiectasia mutated (ATM)-dependent phosphorylation of hypoxia-inducible factor 1-alpha (HIF-1α) on serine(696) and mediates downregulation of mTORC1 signaling. Deregulation of these pathways in pediatric solid tumor xenografts suggests a link between mTORC1 dysregulation and solid tumor development and points to an important role for hypoxic regulation of mTORC1 activity in tumor development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Hipoxia de la Célula , Daño del ADN , Activación Enzimática , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Fosforilación , Fosfoserina/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cancer Cell ; 9(3): 153-5, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16530700

RESUMEN

Rapamycin analogs that inhibit mTOR signaling have antitumor activity against certain lymphomas, but treatment of solid tumors has been less encouraging despite inhibition of mTOR function. Two recent papers give insight into the potential use of mTOR inhibitors. O'Reilly et al. provide evidence that poor tumor response to rapamycins is the result of relieving mTOR-mediated feedback inhibition of insulin receptor substrate 1, and activation of Akt-mediated survival. In the second paper, Kaper et al. address the impact of pathway activation on hypoxia-mediated downregulation of mTOR signaling, raising the possibility that rapalogs could selectively inhibit hypoxic cells.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas/efectos de los fármacos , Transducción de Señal/fisiología , Animales , Humanos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Sirolimus/análogos & derivados , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
3.
Mol Cell Biol ; 27(9): 3530-41, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17325029

RESUMEN

The cyclin-dependent kinase inhibitor p21(Cip1) regulates multiple cellular functions and protects cells from genotoxic and other cellular stresses. Activation of apoptosis signal-regulating kinase 1 (ASK1) induced by inhibition of mTOR signaling leads to sustained phospho-c-Jun that is suppressed in cells with functional p53 or by forced expression of p21(Cip1). Here we show that small deletions of p21(Cip1) around S98 abrogate its association with ASK1 but do not affect binding to Cdk1, hence distinguishing between the cell cycle-regulating functions of p21(Cip1) and its ability to suppress activation of the ASK1/Jun N-terminal protein kinase (JNK) pathway. p21(Cip1) is phosphorylated in vitro by both ASK1 and JNK1 at S98. In vivo phosphorylation of p21(Cip1), predominantly carried out by ASK1, is associated with binding to ASK1 and inactivation of ASK1 kinase function. Binding of p21(Cip1) to ASK1 requires ASK1 kinase function and may involve phosphorylation of S98.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Fosfoserina/metabolismo , Antracenos/farmacología , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Activación Enzimática , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Mutación/genética , Señales de Localización Nuclear , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Sirolimus/farmacología
4.
J Med Chem ; 48(7): 2278-81, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15801821

RESUMEN

We examined some in silico approaches to identify Akt (protein kinase B) inhibitors. Experimental validation of selected compounds was achieved using a fluorescence-based enzymatic assay and a substrate phosphorylation assay involving the protein GSK-3. We report on success and failure obtained by using several strategies including FlexX, GOLD, and CSCORE, where the 100-200 top-scoring compounds from a 50000-compound library were experimentally tested. This study led to the identification of low micromolar Akt1 inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/química , Adenosina Trifosfato/química , Sitios de Unión , Bases de Datos Factuales , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3 beta , Indazoles/química , Isoquinolinas/química , Modelos Moleculares , Fragmentos de Péptidos/química , Fosforilación , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt , Relación Estructura-Actividad Cuantitativa
5.
Cancer Res ; 70(5): 2000-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20179209

RESUMEN

Rapamycin-induced apoptosis in sarcoma cells is inhibited by insulin-like growth factor-I (IGF-I) through a signaling pathway independent of Ras-extracellular signal-regulated kinase 1/2 and Akt. IGF-I induces Bad phosphorylation (Ser112, Ser136, and Ser155) in a pathway involving phosphoinositide 3' kinase (PI3K) and protein kinase C (PKC; mu, epsilon, or theta) resulting in sequestering Bad from mitochondria and subsequently interacting with 14-3-3gamma in the cytosol. Gene knockdown of Bad, Bid, Akt1, Akt2, PKC-mu, PKC-epsilon, or PKC-theta was achieved by transient transfection using small interfering RNAs. Results indicate that IGF-I signaling to Bad requires activation of PI3K and PKC (mu, theta, epsilon) but not mTOR, Ras-extracellular signal-regulated kinase 1/2, protein kinase A, or p90(RSK). Wortmannin blocked the phosphorylation of PKC-mu (Ser744/Ser748), suggesting that PI3K is required for the activation of PKCs. PKCs phosphorylate Bad under in vitro conditions, and the association of phosphorylated Bad with PKC-mu or PKC-epsilon, as shown by immunoprecipitation, indicated direct involvement of PKCs in Bad phosphorylation. To confirm these results, cells overexpressing pEGFP-N1, wt-Bad, or Bad with a single site mutated (Ser112Ala; Ser136Ala; Ser155Ala), two sites mutated (Ser(112/136)Ala; Ser(112/155)Ala; Ser(136/155)Ala), or the triple mutant were tested. IGF-I protected completely against rapamycin-induced apoptosis in cells overexpressing wt-Bad and mutants having either one or two sites of phosphorylation mutated. Knockdown of Bid using small interfering RNA showed that Bid is not required for rapamycin-induced cell death. Collectively, these data suggest that IGF-I-induced phosphorylation of Bad at multiple sites via a pathway involving PI3K and PKCs is important for protecting sarcoma cells from rapamycin-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Proteína Quinasa C/metabolismo , Sirolimus/farmacología , Proteínas 14-3-3/metabolismo , Apoptosis/fisiología , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Humanos , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Rabdomiosarcoma/enzimología , Rabdomiosarcoma/patología , Serina-Treonina Quinasas TOR , Proteína Letal Asociada a bcl/metabolismo
6.
J Neurochem ; 97(3): 834-45, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16573649

RESUMEN

Brain-derived neurotrophic factor (BDNF) and other neurotrophins induce a unique prolonged activation of mitogen-activated protein kinase (MAPK) compared with growth factors. Characterization and kinetic and spatial modeling of the signaling pathways underlying this prolonged MAPK activation by BDNF will be important in understanding the physiological role of BDNF in many complex systems in the nervous system. In addition to Shc, fibroblast growth factor receptor substrate 2 (FRS2) is required for the BDNF-induced activation of MAPK. BDNF induces phosphorylation of FRS2. However, BDNF does not induce phosphorylation of FRS2 in cells expressing a deletion mutant of TrkB (TrkBDeltaPTB) missing the juxtamembrane NPXY motif. This motif is the binding site for SHC. NPXY is the consensus sequence for phosphotyrosine binding (PTB) domains, and notably, FRS2 and SHC contain PTB domains. This NPXY motif, which contains tyrosine 484 of TrkB, is therefore the binding site for both FRS2 and SHC. Moreover, the proline containing region (VIENP) of the NPXY motif is also required for FRS2 and SHC phosphorylation, which indicates this region is an important component of FRS2 and SHC recognition by TrkB. Previously, we had found that the phosphorylation of FRS2 induces association of FRS2 and growth factor receptor binding protein 2 (Grb2). Now, we have intriguing data that indicates BDNF induces association of the SH2 domain containing protein tyrosine phosphatase, Shp2, with FRS2. Moreover, the PTB association motif of TrkB containing tyrosine 484 is required for the BDNF-induced association of Shp2 with FRS2 and the phosphorylation of Shp2. These results imply that FRS2 and Shp2 are in a BDNF signaling pathway. Shp2 is required for complete MAPK activation by BDNF, as expression of a dominant negative Shp2 in cells attenuates BDNF-induced activation of MAPK. Moreover, expression of a dominant negative Shp2 attenuates Ras activation showing that the protein tyrosine phosphatase is required for complete activation of MAPKs by BDNF. In conclusion, Shp2 regulates BDNF signaling through the MAPK pathway by regulating either Ras directly or alternatively, by signaling components upstream of Ras. Characterization of MAPK signaling controlled by BDNF is likely to be required to understand the complex physiological role of BDNF in neuronal systems ranging from the regulation of neuronal growth and survival to the regulation of synapses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Proteínas Tirosina Fosfatasas/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Animales Recién Nacidos , Western Blotting/métodos , Células Cultivadas , Corteza Cerebral/citología , Activación Enzimática/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación/métodos , Mutagénesis Sitio-Dirigida/métodos , Neuroblastoma , Neuronas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Ratas , Ratas Long-Evans , Receptor trkB/metabolismo , Proteínas Tirosina Fosfatasas con Dominio SH2 , Factores de Tiempo , Transfección/métodos , Tirosina/metabolismo
7.
J Biol Chem ; 280(36): 31924-35, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-16009706

RESUMEN

A series of 30 N10-substituted phenoxazines were synthesized and screened as potential inhibitors of Akt. In cellular assays at 5 mum, 17 compounds inhibited insulin-like growth factor 1 (IGF-I)-stimulated phosphorylation of Akt (Ser-473) by at least 50% but did not inhibit IGF-I-stimulated phosphorylation of Erk-1/2 (Thr-202/Tyr-204). Substitutions at the 2-position (Cl or CF3) did not alter inhibitory activity, whereas N10-substitutions with derivatives having acetyl (20B) or morpholino (12B) side chain lost activity compared with propyl or butyl substituents (7B and 14B). Inhibition of Akt phosphorylation was associated with the inhibition of IGF-I stimulation of the mammalian target of rapamycin phosphorylation (Ser-2448 and Ser-2481), phosphorylation of p70 S6 kinase (Thr-389), and ribosomal protein S6 (Ser-235/236) in Rh1, Rh18, and Rh30 cell lines. The two most potent compounds 10-[4'-(N-diethylamino)butyl]-2-chlorophenoxazine (10B) and 10-[4'-[(beta-hydroxyethyl)piperazino]butyl]-2-chlorophenoxazine (15B) (in vitro, IC50 approximately 1-2 microM) were studied further. Inhibition of Akt phosphorylation correlated with inhibition of its kinase activity as determined in vitro after immunoprecipitation. Akt inhibitory phenoxazines did not inhibit the activity of recombinant phosphatidylinositol 3'-kinase, PDK1, or SGK1 but potently inhibited the kinase activity of recombinant Akt and Akt deltaPH, a mutant lacking the pleckstrin homology domain. Akt inhibitory phenoxazines blocked IGF-I-stimulated nuclear translocation of Akt in Rh1 cells and suppressed growth of Rh1, Rh18, and Rh30 cells (IC50 2-5 microM), whereas "inactive" derivatives were > or = 10-fold less potent inhibitors of cell growth. In contrast to rapamycin analogs, Akt inhibitory phenoxazines induced significant levels of apoptosis under serum-containing culture conditions at concentrations of agent consistent with Akt inhibition. Thus, the cellular responses to phenoxazine inhibitors of Akt appear qualitatively different from the rapamycin analogs. Modeling studies suggest inhibitory phenoxazines may bind in the ATP-binding site, although ATP competition studies were unable to distinguish between competitive and noncompetitive inhibition.


Asunto(s)
Oxazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Transporte Activo de Núcleo Celular/fisiología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Apoptosis/fisiología , Azidas/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Cinética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-akt
8.
Expert Opin Ther Targets ; 8(6): 551-64, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15584862

RESUMEN

Target of rapamycin (TOR) functions within the cell as a transducer of information from various sources, including growth factors, energy sensors, and hypoxia sensors, as well as components of the cell regulating growth and division. Blocking TOR function mimics amino acid, and to some extent, growth factor deprivation and has a cytostatic effect on proliferating cells in vivo. Inhibition of TOR in vivo, utilising its namesake rapamycin, leads to immunosuppression. This property has been exploited successfully with the use of rapamycin and its derivatives as a therapeutic agent in the prevention of organ rejection after transplantation with relatively mild side effects when compared to other immunosuppressive agents. The cytostatic effect of TOR on vascular smooth muscle cell proliferation has also recently been exploited in the therapeutic application of rapamycin to drug eluting stents for angioplasty. These stents significantly reduce the amount of arterial reblockage that results from proliferating vascular smooth muscle cells. In cancer, the effect of blocking TOR function on tumour growth and disease progression is currently of major interest and is the basis for a number of ongoing clinical trials. However, different cell types and tumours respond differently to TOR inhibition, and TOR is clearly not cytostatic for all types of cancer cells in vitro or in vivo. As the molecular details of how TOR functions and the targets of TOR activity are further elucidated, tumour and tissue specific functions are being identified that implicate TOR in angiogenesis, apoptosis, and the reversal of some forms of cellular transformation. This review will describe our current understanding of TOR function, describe the current strategies for employing TOR inhibitors in clinical and preclinical development, and outline future strategies for appropriate targets of TOR inhibitors in the treatment of disease.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/fisiología , Sirolimus/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Arteriopatías Oclusivas/prevención & control , División Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Sustancias de Crecimiento/fisiología , Trasplante de Corazón , Humanos , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Modelos Biológicos , Músculo Liso Vascular/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/fisiología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Complicaciones Posoperatorias/prevención & control , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/análogos & derivados , Sirolimus/farmacología , Stents , Serina-Treonina Quinasas TOR , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA