RESUMEN
Reduction of a tricobalt(II) tri(bromide) cluster supported by a tris(ß-diketiminate) cyclophane results in halide loss, ligand compression, and metal-metal bond formation to yield a 48-electron CoI3 cluster, Co3LEt/Me (2). Upon reaction of 2 with dinitrogen, all metal-metal bonds are broken, steric conflicts are relaxed, and dinitrogen is incorporated within the internal cavity to yield a formally (µ3-η1:η2:η1-dinitrogen)tricobalt(I) complex, 3. Broken symmetry DFT calculations (PBE0/def2-tzvp/D3) support an N-N bond order of 2.1 in the bound N2 with the calculated N-N stretching frequency (1743 cm-1) comparable to the experimental value (1752 cm-1). Reduction of 3 under Ar in the presence of Me3SiBr results in N2 scission with tris(trimethylsilyl)amine afforded in good yield.
RESUMEN
Tris(ß-diketimine) cyclophanes are an important ligand class for investigating cooperative multimetallic interactions of bioinorganic clusters. Discussed herein are the synthetic factors governing access to tris(ß-diketimine) cyclophanes versus tripodal tri-ß-aminoenones. Cyclophanes bearing Me, Et, and MeO cap substituents and ß-Me, Et, or Ph arm substituents are obtained, and a modified condensation method produced α-Me ß-Me cyclophane. These operationally simple procedures produce the ligands in gram quantities and in 22-94% yields.
Asunto(s)
LigandosRESUMEN
We report catalytic silylation of dinitrogen to tris(trimethylsilyl)amine by a series of trinuclear first row transition metal complexes (M = Cr, Mn, Fe, Co, Ni) housed in our tris(ß-diketiminate) cyclophane (L 3- ). Yields are expectedly dependent on metal ion type ranging from 14 to 199 equiv NH4 +/complex after protonolysis for the Mn to Co congeners, respectively. For the series of complexes, the number of turnovers trend observed is Co > Fe > Cr > Ni > Mn, consistent with prior reports of greater efficacy of Co over Fe in other ligand systems for this reaction.