Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(14): 142501, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640393

RESUMEN

We report on a study of the radiative decay of fission fragments populated via neutronless fission of ^{252}Cf(sf). Applying the double-energy method a perfect mass identification is achieved for these rare events. In the specific case of the ^{120}Cd/^{132}Sn cold fragmentation, we find that ^{132}Sn is produced in its ground state. We can therefore directly measure the excitation energy of the complementary fragment, ^{120}Cd. The reproduction of the γ-ray spectrum, measured in coincidence with the neutronless fission events, is sensitive to the angular momentum distribution of the studied primary fragment. The latter estimated using a time-dependent collective Hamiltonian model, allows us to constrain for the first time the deformation (ß_{2}≃0.4) of the studied fission fragment at scission. The present work demonstrates the high potential of the understudied neutronless fission channel for extracting detailed information on both fission fragments and process.

2.
Phys Rev Lett ; 124(20): 202502, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501052

RESUMEN

Taking benefit of the R3B/SOFIA setup to measure the mass and the nuclear charge of both fission fragments in coincidence with the total prompt-neutron multiplicity, the scission configurations are inferred along the thorium chain, from the asymmetric fission in the heavier isotopes to the symmetric fission in the neutron-deficient thorium. Against all expectations, the symmetric scission in the light thorium isotopes shows a compact configuration, which is in total contrast to what is known in the fission of the heavier thorium isotopes and heavier actinides. This new main symmetric scission mode is characterized by a significant drop in deformation energy of the fission fragments of about 19 MeV, compared to the well-known symmetric scission in the uranium-plutonium region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA