RESUMEN
The 1-acyl thiourea family [R1C(O)NHC(S)NR2R3] exhibits the flexibility to incorporate a wide variety of substituents into their structure. The structural attributes of these compounds are intricately tied to the type and extent of substitution. In the case of 3-mono-substituted thioureas (R2=H), the conformational behavior is predominantly shaped by the presence of an intramolecular N-H â â â O=C hydrogen bond. This study delves into the structural consequences stemming from the inclusion of substituents possessing hydrogen-donor capabilities within four novel 1-acyl-3-mono-substituted thiourea derivatives. A comprehensive suite of analytical techniques, encompassing FTIR, Raman spectroscopy, multinuclear (1H and 13C) NMR spectroscopy, single-crystal X-ray diffraction, and supported by computational methods, notably NBO (Natural Bond Orbital) population analysis, Hirshfeld analysis, and QTAIM (Quantum Theory of Atoms in Molecules), was harnessed to scrutinize and characterize these compounds. In the crystalline state, these compounds exhibit an intricate interplay of intermolecular interactions, prominently featuring an expansive network of hydrogen bonds between the hydroxy (-OH) groups and the carbonyl and thiocarbonyl bonds within the 1-acyl thiourea fragment. Notably, the topological analysis underscores significant distinctions in the properties of the acyl thiourea fragment and the intramolecular >C=O â â â H-N bond when transitioning from the isolated molecule to the crystalline environment.
RESUMEN
Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 µM) and spheroids (IC50 3D: 16.3 ± 3.1 µM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 µM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 µM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 µM, indicating both anticancer and antimetastatic effects.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Humanos , Adulto Joven , Cobre/farmacología , Ligandos , Osteosarcoma/tratamiento farmacológicoRESUMEN
A series of 2-(haloalkyl)-3-azidomethyl and 6-azido chromones has been synthetized, characterized and studied by theoretical (DFT calculations) and spectroscopic methods (UV-Vis, NMR). The crystal structure of 3-azidomethyl-2-difluoromethyl chromone, determined by X-ray diffraction methods, shows a planar framework due to extended π-bond delocalization. Its molecular packing is stabilized by F···H, N···H and O···H hydrogen bonds, π···π stacking and C-O···π intermolecular interactions. Moreover, AIM, NCI and Hirshfeld analysis evidenced that azido moiety has a significant role in the stabilization of crystal packing through weak intermolecular interactions, where analysis of electronic density suggested closed-shell (CS) interatomic interactions.
Asunto(s)
Enlace de Hidrógeno , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Difracción de Rayos XRESUMEN
Isatin in a solution of dry N,N-dimethylformamide/NaClO4 is electroreduced in the presence of CH3I. N-methylisatin (NMI) is obtained in quantitative molar yield and high current efficiency by controlled potential electrolysis (CPE). NMI and N-methylisatoic anhydride are the reaction products when CPE is performed in the absence of CH3I, but adding it once the CPE was completed. The water effect on the identity and yield of the reaction product(s) is investigated. Reaction pathways are proposed.
RESUMEN
The strange tautomeric equilibrium behavior exhibited by a new o-hydroxyphenyl diazepine derivative when the compound is analyzed both in solution and solid state opens the structural study of the enol-imino-keto-enamine forms and the influence of the intermolecular interactions in their equilibrium. The expected enol-imino form, in which the enol is part of a phenyl system and a strong O-H···N intramolecular hydrogen bond is established, results the most stable tautomer in gas phase (theoretical calculations) and was detected by NMR spectroscopy when the compound was dissolved in aprotic solvents. Nevertheless, the keto-enamine form ,in which the keto group integrates a cyclohexadienone moiety and the aromaticity of the phenol is lost, was the only tautomer in the crystal lattice according to single-crystal X-ray diffraction, vibrational spectroscopy, and diffuse reflectance results. The last form was also found as the main tautomer in UV-vis and NMR spectroscopy when a protic solvent was employed.
RESUMEN
A new Cu(II) complex with the antihypertensive drug telmisartan, [Cu8Tlm16]·24H2O (CuTlm), was synthesized and characterized by elemental analysis and electronic, FTIR, Raman and electron paramagnetic resonance spectroscopy. The crystal structure (at 120 K) was solved by X-ray diffraction methods. The octanuclear complex is a hydrate of but otherwise isostructural to the previously reported [Cu8Tlm16] complex. [Cu8Tlm16]·24H2O crystallizes in the tetragonal P4/ncc space group with a = b = 47.335(1), c = 30.894(3) Å, Z = 4 molecules per unit cell giving a macrocyclic ring with a double helical structure. The Cu(II) ions are in a distorted bipyramidal environment with a somewhat twisted square basis, cis-coordinated at their core N2O2 basis to two carboxylate oxygen and two terminal benzimidazole nitrogen atoms. Cu8Tlm16 has a toroidal-like shape with a hydrophobic nanometer hole, and their crystal packing defines nanochannels that extend along the crystal c-axis. Several biological activities of the complex and the parent ligand were examined in vitro. The antioxidant measurements indicate that the complex behaves as a superoxide dismutase mimic with improved superoxide scavenger power as compared with native sartan. The capacity of telmisartan and its copper complex to expand human mesangial cells (previously contracted by angiotensin II treatment) is similar to each other. The antihypertensive effect of the compounds is attributed to the strongest binding affinity to angiotensin II type 1 receptor and not to the antioxidant effects. The cytotoxic activity of the complex and that of its components was determined against lung cancer cell line A549 and three prostate cancer cell lines (LNCaP, PC-3, and DU 145). The complex displays some inhibitory effect on the A549 line and a high viability decrease on the LNCaP (androgen-sensitive) line. From flow cytometric analysis, an apoptotic mechanism was established for the latter cell line. Telmisartan and CuTlm show antibacterial and antifungal activities in various strains, and CuTlm displays improved activity against the Staphylococcus aureus strain as compared with unbounded copper(II).
Asunto(s)
Antibacterianos/síntesis química , Antihipertensivos/síntesis química , Antineoplásicos/síntesis química , Antioxidantes/síntesis química , Bencimidazoles/química , Benzoatos/química , Cobre/química , Antibacterianos/química , Antibacterianos/farmacología , Antihipertensivos/química , Antihipertensivos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Bacterias/efectos de los fármacos , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Nanoestructuras , TelmisartánRESUMEN
In the course of our studies on 3H-1,2-dithiole-3-thione synthesis, a serendipitous reactivity with α-haloketones, in the presence of excess of potassium iodide, has been observed. Instead of the expected reaction of the nucleophile in a remote point of the molecule, we have obtained a product resulted from the electrophile character of the thiocarbonyl moiety on the 3-position of the 1,2-dithiole. In order to obtain an efficient protocol in terms of energy efficiency, this methodology was studied under conventional and microwave heating with similar or better results in the latter conditions. Simplicity and great efficiency in this one-step transformation are some of the advantages of this reaction. Moreover, the results can be explained according to the Pearson's hard and soft acid base theory.
Asunto(s)
Teoría Cuántica , Tionas/química , Tiofenos/química , Tolueno/análogos & derivados , Quimioprevención , Modelos Moleculares , Conformación Molecular , Tolueno/químicaRESUMEN
Ethyl acetate (ethyl ethanoate) was crystallized in situ and the crystal structure was determined. In the solid, the molecule is flat with trans conformation. The geometric details of ethyl acetate as a solvate are analyzed statistically using the Cambridge Structural Database, uncovering a high degree of hidden disorder. Despite the disorder, they exhibit a preference of the trans over the gauche isomer, with a negligible contribution of the cis isomer. These results are compared to ab initio calculations on both solid-state and molecular level. For the molecular structures, the computed energy differences of the isomers match the statistics found as a solvent. Several DFT-D2 methods used to calculate the solid state yield results that differ significantly from the experiment.
Asunto(s)
Acetatos/química , Teoría Cuántica , Cristalografía por Rayos X , Modelos Moleculares , Solventes/químicaRESUMEN
The molecular and crystal structure of two dithiolactones (formally dimers of ε-caprothiolactone and ω-hexadecathiolactone) have been determined by X-ray diffraction at low temperature, revealing that the thioester group is planar with a synperiplanar orientation of the CâO double bond with respect to the S-C single bond. This conformational behavior is in contrast to that found for the smaller cyclic members of this family, where the antiperiplanar conformation is enforced. It is hypothesized that strain effects play a major role for the energy balance in the conformational preference. In this context, the molecular, vibrational (infrared and Raman), and electronic properties of ε-caprothiolactone have also been analyzed by using a combined experimental, including gas-phase helium I photoelectron spectroscopy, and computational approach.
Asunto(s)
Lactonas/química , Compuestos de Sulfhidrilo/química , Modelos Moleculares , Conformación Molecular , Teoría CuánticaRESUMEN
Chagas' disease (American Trypanosomiasis) is an ancient and endemic illness in Latin America caused by the protozoan parasite Trypanosoma cruzi. Although there is an urgent need for more efficient and less toxic chemotherapeutics, no new drugs to treat this disease have entered the clinic in the last decades. Searching for metal-based prospective antichagasic drugs, in this work, multifunctional Re(I) tricarbonyl compounds bearing two different bioactive ligands were designed: a polypyridyl NN derivative of 1,10-phenanthroline and a monodentate azole (Clotrimazole CTZ or Ketoconazol KTZ). Five fac-[Re(CO)3(NN)(CTZ)](PF6) compounds and a fac-[Re(CO)3(NN)(KTZ)](PF6) were synthesized and fully characterized. They showed activity against epimastigotes (IC50 3.48-9.42 µM) and trypomastigotes of T. cruzi (IC50 0.61-2.79 µM) and moderate to good selectivity towards the parasite compared to the VERO mammalian cell model. In order to unravel the mechanism of action of our compounds, two potential targets were experimentally and theoretically studied, namely DNA and one of the enzymes involved in the parasite ergosterol biosynthetic pathway, CYP51 (lanosterol 14-α-demethylase). As hypothesized, the multifunctional compounds shared in vitro a similar mode of action as that disclosed for the single bioactive moieties included in the new chemical entities. Additionally, two relevant physicochemical properties of biological interest in prospective drug development, namely lipophilicity and stability in solution in different media, were determined. The whole set of results demonstrates the potentiality of these Re(I) tricarbonyls as promising candidates for further antitrypanosomal drug development.
Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Compuestos Organometálicos , Trypanosoma cruzi , Humanos , Enfermedad de Chagas/tratamiento farmacológico , Compuestos Organometálicos/química , Antiprotozoarios/química , Cetoconazol/químicaRESUMEN
Eight Schiff bases, synthesized by the reaction of 4-aminoantipyrine with different cinnamaldehydes, were studied in the solid state by using vibrational spectroscopy (IR) and X-ray diffraction techniques. The analysis was extended to the solution phase through ultraviolet-vis, fluorescence spectroscopy, and cyclic voltammetry. Finally, the crystal structures of four compounds (3b, 3d, 3g, and 3h) were determined and studied. In addition to the experimental study, theoretical calculations using the semiempirical method PM6/ZDO were performed to understand better the compound's molecular properties, UV-vis, and infrared spectra. The primary difference is the angular conformation of the terminal phenyl rings around the corresponding linking C-N and C-C σ-bonds. Furthermore, as a result of extended bonding, the > C=N- azomethine group-containing Cpyr-N=(CH)-(CR)=(CH)-Cbz chain (with R=H for 3b, 3d, and 3h, and R=CH3 for 3g) is planar, nearly coplanar, with the mean plane of the pyrazole ring. Hirshfeld surface (HS) analysis was used to investigate the crystal packing and intermolecular interactions, which revealed that intermolecular C-H···O and C-H···N hydrogen bonds, π···π stacking, and C-H···π and C=O···π interactions stabilize the compounds. The energy contributions to the lattice energies of potential hydrogen bonds were primarily dispersive and repulsive. All derivatives were tested in vitro on LPS-stimulated mouse macrophages to assess their ability to suppress the LPS-induced inflammatory responses. Only a slight reduction in the level of NO production was found in activated macrophages treated with 3h. Additionally, the derivatives were tested for antimicrobial activity against several clinical bacteria and fungi strains, including three biofilm-forming microorganisms. Nevertheless, only Schiff base 3f showed interesting antibacterial activities with minimum inhibitory concentration (MIC) values as low as 15.6 µM against Enterobacter gergoviae. On the other hand, Schiff base 3f and, to a lesser extent, 3b and 3h showed antifungal activity against clinical isolates of Candida. The lowest MIC value was for 3f against Candida albicans (15.6 µM). It is interesting to note that the same Schiff bases exhibit the highest activity in both biological evaluations.
RESUMEN
The compound 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-9-ol (9-hydroxyeucaliptol) has been prepared and characterized by single-crystal X-ray diffraction analysis, infrared, Raman, and UV-visible spectroscopies. The molecular geometry of the title compound was also investigated theoretically by density functional theory (DFT) calculations to compare with the experimental data. The substance crystallizes in the trigonal crystal system, space group P32 with Z = 9 molecules per unit cell. There are three independent molecules in the crystal asymmetric unit having the same chirality and showing some differences in the orientation of the H-atom of the hydroxyl group. The crystal structure of 9-hydroxyeucaliptol shows that the hydroxyl group presents an anti-conformation with respect to the O-atom of the ether group. The crystal packing of 9-hydroxyeucaliptol is stabilized by intermolecular O-H···O hydrogen bonds involving the hydroxyl groups of different molecules, which play a decisive role in the preferred conformation adopted in solid state. The intermolecular interactions observed in solid state were also studied through the Hirshfeld surface analysis and quantum theory of atoms in molecules (QTAIM) approaches. Energy framework calculations have also been carried out to analyze and visualize the topology of the supramolecular assembly, and the results indicate a significant contribution from electrostatic energy over the dispersion.
RESUMEN
Diverse models of intramolecular charge transfer (ICT) have been proposed for interpreting the origin of the charge-transfer (CT) state in donor-acceptor (D-A) dyes. However, a large variety of fused-heterocyclic dyes containing a pseudo-aromatic ring in the rigid structure have shown to be incompatible with them. To approximate a solution within the ICT concept, we reported a novel ICT model called partially aromatized intramolecular charge transfer (PAICT). PAICT involves the generation of a CT state from an ICT that occurred within a pre-excited D-A fused-heterocyclic structure possessing a pseudo-aromatic or unstable aromatic ring as the acceptor moiety. The model was proposed from the multiple-emissive mesomeric D-A N1-aryl-2-(trifluoromethyl)benzo[b][1,8]naphthyridin-4(1H)-one, whose excited mesomeric states, which are defined by the aromatic and pseudo-aromatic forms of the pyrindin-4(1H)-one ring, led to a common partial aromatized CT state upon excitation via PAICT. The latter was supported through theoretical calculations on the excited mesomeric states, one-dimensional (1D) and two-dimensional (2D) excitation-emission measurements in different solvents, and the detection of three excited states by lifetime measurements upon 370 nm excitation. The existence of mesomerism was supposed from: (i) two overlapping bands at 370-390 (or 400-420 nm) in UV-vis spectra, (ii) the direct interaction between the pyridinic nitrogen of one molecule and the carbonylic oxygen of the other found in the solid state and, (iii) the detection of three excited states by lifetime measurements. The PAICT opens new perspectives for interpreting the charge-transfer phenomenon in fused-heterocyclic dyes, in particular, those containing a pseudo-aromatic or unstable aromatic ring as an acceptor moiety.
Asunto(s)
Colorantes/química , SolventesRESUMEN
We report here the synthesis, crystal structure, characterization and anticancer activity of a copper(ii)-hydrazone complex, [Cu(MeBHoVa)(H2O)2](NO3) (for short, CuHL), against human breast cancer cells on monolayer (2D) and spheroids/mammospheres (3D). The solid-state molecular structure of the complex has been determined by X-ray diffraction methods. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by computational methods based on DFT. The compound has been characterized in the solid state and in solution by spectroscopic (FTIR, Raman, UV-vis) methods. The results were compared with those obtained for the hydrazone ligand and complemented with DFT calculations. Cell viability assays on MCF7 (IC50(CuHL) = 1.7 ± 0.1 µM, IC50(CDDP) = 42.0 ± 3.2 µM) and MDA-MB-231 (IC50(CuHL) = 1.6 ± 0.1 µM, IC50(CDDP) = 131.0 ± 18 µM) demonstrated that the complex displays higher antitumor activity than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Molecular docking and molecular dynamics simulations showed that CuHL could interacts with DNA, inducing a significant genotoxic effect on both breast cancer cells from 0.5 to 1 µM. On the other hand, CuHL increases the ROS production and induces cell programmed death on breast cancer cells at very low micromolar concentrations (0.5-1.0 µM). Moreover, the compound decreased the amount of breast CSCs on MCF7 and MDA-MB-231 cells reducing the percentage of CD44+/CD24-/low cells from 0.5 to 1.5 µM. In addition, CuHL overcame CDDP with an IC50 value 65-fold lower against breast multicellular spheroids ((IC50(CuHL) = 2.2 ± 0.3 µM, IC50(CDDP) = 125 ± 4.5 µM)). Finally, CuHL reduced mammosphere formation capacity, hence affecting the size and number of mammospheres and showing that the complex exhibits antitumor properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Complejos de Coordinación/farmacología , Cobre/farmacología , Hidrazonas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Cobre/química , Daño del ADN , Femenino , Humanos , Hidrazonas/química , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutágenos/química , Mutágenos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares/efectos de los fármacosRESUMEN
Two new transition metal complexes with 1-methylimidazole (1-MeIm) and azide as ligands, namely, [Co(1-MeIm)4(N3)2] (1) and [Ni(1-MeIm)4(N3)2] (2), have been synthesized and characterized by IR, Raman, UV-Vis and XPS spectroscopy. Their crystal structures were solved by single-crystal X-ray diffraction. The supramolecular self-assembly of the two complexes is governed by non-classical C-Hâ¯N hydrogen bonds and C-Hâ¯π interactions. Lattice energies and intermolecular interaction energies for various molecular pairs are quantified using the PIXEL method. DFT computational studies to assess the binding energy through modern tools like non-covalent interaction (NCI plots) analysis and reduced density gradient (RDG) analysis have also been carried out. A detailed analysis of geometric descriptors revealed the existence of quasi-isostructural pairs or 'main-part' isostructuralism in a series formed by 1, 2, and a related cadmium complex, being more evident in the 1/2 pair. DFT studies using theoretical models have been used to disclose the relative importance of the H-bond and C-Hâ¯π noncovalent interactions. Magnetic measurements for compound 1 show weak ferrimagnetic coupling between adjacent M(II) centers, mediated by H-bonding and C-Hâ¯π non-covalent interactions.
RESUMEN
We report the synthesis and biological evaluation of a ternary copper complex, [Cu(5HTP)(phen)(H2O)](NO3).2H2O, with the antioxidant agent 5-hydroxytryptophan (5-HTP) and phenanthroline (phen, added to improve its lipophilicity and membrane transport). The crystal structure of the complex was determined by X-ray diffraction methods. The complex showed antioxidant, antimicrobial, antitumor and antimetastatic properties with an adequate safety profile. The interaction of the metal with phen promotes cellular copper accumulation and cytotoxicity on human lung A549 cell line (IC50 = 3.6 µM). Furthermore, the viability of the normal human fetal lung fibroblast cell line (MRC-5) is not altered by the complex. An oxidative stress mechanism for the anticancer effect has been determined: cellular increase of reactive oxygen species (ROS), decrease of the glutathione (GSH) and oxidized GSH (GSSG) ratio and alteration of the mitochondrial potential. The complex also displays antimetastatic activities with inhibition of cell adhesion, invasion and migration. It has not mutagenic behavior and no toxicity on Artemia salina indicating its potential to act as an effective and safety antimicrobial and antitumor drug.
Asunto(s)
5-Hidroxitriptófano/química , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/química , Neoplasias Pulmonares/tratamiento farmacológico , Fenantrolinas/química , Células A549 , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Artemia/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Cobre/farmacología , Humanos , Fenantrolinas/farmacología , Pruebas de ToxicidadRESUMEN
The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol-ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter-acts through a strong hydrogen bond with a water mol-ecule of crystallization. In the crystal, mol-ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter-act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol-ecules. The mol-ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT-IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter-molecular inter-actions in the crystal packing.
RESUMEN
BACKGROUND: Magnesium is an essential element related with biochemistry of the brain and different types of depression have been associated with its deficiency. METHODS: The structure of a novel magnesium bis(DL-pyroglutamate) (Mg(DL-pGlu)2) was elucidated by X-ray crystallography. Wistar rats were used in the in vivo experiments. The antidepressant-like effect was assessed by the forced swim test (FST) and the antinociceptive activity was evaluated using hot plate test. In both, non-specific effects were evaluated by the open field test. Anti-thyroid activity was examined using Lang's method. Albumin binding behavior was evaluated by 3D fluorescence spectroscopy. RESULTS: For the Mg(DL-pGlu)2 complex (30â¯mg/kg), the FST test on Wistar rats revealed a decrease of 22% in the immobility time and an increment of 106% in the swimming time. The compound alters neither the locomotor activity nor the body weight after chronic administration. At the same dose, it showed antinociceptive activity, increasing the response latency. It blocks iodination reactions generating a charge transfer complex with iodine hence indicating anti-thyroid activity (Kc = 45366.5⯱â¯29 M-1). Albumin 3D fluorescence spectroscopy experiments showed intensity increase of peak A and decrease of peak B. CONCLUSIONS: The results showed that the new compound produced a lowering of the immobility time and an increment of the swimming ability of the rats. The compound is able to increase the response latency in 70.0%, to capture iodine (anti-thyroid activity) and to interact with albumin through covalent type of interaction of the free NH groups.
Asunto(s)
Analgésicos/farmacología , Antidepresivos/farmacología , Magnesio/farmacología , Ácido Pirrolidona Carboxílico/farmacología , Glándula Tiroides/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Natación/fisiologíaRESUMEN
In the search for a more effective chemotherapy for the treatment of Chagas' disease and human African trypanosomiasis, caused by Trypanosoma cruzi and Trypanosoma brucei parasites, respectively, the use of organometallic compounds may be a promising strategy. In this work, eight new heterobimetallic compounds are described including four 5-nitrofuryl containing thiosemicarbazones as bioactive ligands (HL1-HL4) and dppf = 1,1'-bis(diphenylphosphino) ferrocene as an organometallic co-ligand. Complexes of the formula [MII(L)(dppf)](PF6) with M = Pd or Pt were synthesized and fully characterized in the solid state and in solution, including the determination of the molecular structure of four of them by single crystal X-ray diffraction methods. Most compounds showed activity in the low micromolar or submicromolar range against both parasites, with the platinum compounds being more active than the palladium analogues. Activity was significantly increased by generation of the M-dppf compounds (3-24 fold increase with respect to free ligands HL for T. cruzi and up to 99 fold increase with respect to HL for T. brucei). The inclusion of the organometallic co-ligand also led to lower toxicity in mammalian cells and higher selectivity towards both parasites when compared to the free HL compounds. The complexes interact with DNA and affect the redox metabolism of the parasites. Furthermore, the most active and selective compound of the new series showed no in vivo toxicity in zebrafish embryos.
Asunto(s)
Compuestos Ferrosos/química , Metalocenos/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Paladio/química , Platino (Metal)/química , Tripanocidas/química , Tripanocidas/farmacología , Células A549 , Animales , Bovinos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Compuestos Organometálicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina/metabolismo , Tripanocidas/metabolismo , Trypanosoma cruzi/efectos de los fármacosRESUMEN
An unpredicted fourfold screw N-H...O hydrogen bond C(4) motif in a primary dicarboxamide (trans-cyclohexane-1,4-dicarboxamide, C8H14N2O2) was investigated by single-crystal X-ray diffraction and IR and Raman spectroscopies. Electron-density topology and intermolecular energy analyses determined from ab initio calculations were employed to examine the influence of weak C-H...O hydrogen-bond interactions on the peculiar arrangement of molecules in the tetragonal P43212 space group. In addition, the way in which the co-operative effects of those weak bonds might modify their relative influence on molecular packing was estimated from cluster calculations. Based on the results, a structural model is proposed which helps to rationalize the unusual fourfold screw molecular arrangement.