Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 94(2): e20200394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35319598

RESUMEN

Alternaria alternata causes leaf spot and black rot diseases in leaves and grapes of grapevines, respectively, and leads to huge economic losses in table grapes production. As natural antifungal agents, essential oils (EOs), which are generally recognized as safe substances, shows strong antifungal activity against fungal phytopathogens. The aim of this study was to determine the chemical composition of Eucalyptus staigeriana EO and its in vitro and in vivo effects against A. alternata. The major compounds of E. staigeriana EO were citral (34.32%, of which 21.83% geranial and 12.49% neral), limonene (20.60%) and 1,8-cineole (12.33%). E. staigeriana EO exhibited the highest inhibitory activity on mycelial growth and conidial germination at 1 µL mL-1. Moreover, the EO was able to reduce the incidence and severity of leaf spot disease in leaves and black rot disease in table grapes caused by A. alternata. These results represent a possible alternative to reduce the use of synthetic molecules for the control of diseases in postharvest of table grapes and in vineyard.


Asunto(s)
Eucalyptus , Aceites Volátiles , Vitis , Alternaria , Antifúngicos/química , Antifúngicos/farmacología , Aceites Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
2.
Gene ; 528(2): 277-81, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23850726

RESUMEN

The influenza virus has been a challenge to science due to its ability to withstand new environmental conditions. Taking into account the development of virus sequence databases, computational approaches can be helpful to understand virus behavior over time. Furthermore, they can suggest new directions to deal with influenza. This work presents triplet entropy analysis as a potential phylodynamic tool to quantify nucleotide organization of viral sequences. The application of this measure to segments of hemagglutinin (HA) and neuraminidase (NA) of H1N1 and H3N2 virus subtypes has shown some variability effects along timeline, inferring about virus evolution. Sequences were divided by year and compared for virus subtype (H1N1 and H3N2). The nonparametric Mann-Whitney test was used for comparison between groups. Results show that differentiation in entropy precedes differentiation in GC content for both groups. Considering the HA fragment, both triplet entropy as well as GC concentration show intersection in 2009, year of the recent pandemic. Some conclusions about possible flu evolutionary lines were drawn.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Neuraminidasa/genética , Composición de Base , Evolución Molecular , Humanos , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA