Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 300(1): 105503, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013090

RESUMEN

Hyperthermophilic organisms thrive in extreme environments prone to high levels of DNA damage. Growth at high temperature stimulates DNA base hydrolysis resulting in apurinic/apyrimidinic (AP) sites that destabilize the genome. Organisms across all domains have evolved enzymes to recognize and repair AP sites to maintain genome stability. The hyperthermophilic archaeon Thermococcus kodakarensis encodes several enzymes to repair AP site damage including the essential AP endonuclease TK endonuclease IV. Recently, using functional genomic screening, we discovered a new family of AP lyases typified by TK0353. Here, using biochemistry, structural analysis, and genetic deletion, we have characterized the TK0353 structure and function. TK0353 lacks glycosylase activity on a variety of damaged bases and is therefore either a monofunctional AP lyase or may be a glycosylase-lyase on a yet unidentified substrate. The crystal structure of TK0353 revealed a novel fold, which does not resemble other known DNA repair enzymes. The TK0353 gene is not essential for T. kodakarensis viability presumably because of redundant base excision repair enzymes involved in AP site processing. In summary, TK0353 is a novel AP lyase unique to hyperthermophiles that provides redundant repair activity necessary for genome maintenance.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Thermococcus , Desoxirribonucleasa IV (Fago T4-Inducido) , Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Thermococcus/enzimología , Thermococcus/genética
2.
Nucleic Acids Res ; 51(22): 12508-12521, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37971311

RESUMEN

Cellular DNA is subject to damage from a multitude of sources and repair or bypass of sites of damage utilize an array of context or cell cycle dependent systems. The recognition and removal of oxidatively damaged bases is the task of DNA glycosylases from the base excision repair pathway utilizing two structural families that excise base lesions in a wide range of DNA contexts including duplex, single-stranded and bubble structures arising during transcription. The mammalian NEIL2 glycosylase of the Fpg/Nei family excises lesions from each of these DNA contexts favoring the latter two with a preference for oxidized cytosine products and abasic sites. We have determined the first liganded crystal structure of mammalian NEIL2 in complex with an abasic site analog containing DNA duplex at 2.08 Å resolution. Comparison to the unliganded structure revealed a large interdomain conformational shift upon binding the DNA substrate accompanied by local conformational changes in the C-terminal domain zinc finger and N-terminal domain void-filling loop necessary to position the enzyme on the DNA. The detailed biochemical analysis of NEIL2 with an array of oxidized base lesions indicates a significant preference for its lyase activity likely to be paramount when interpreting the biological consequences of variants.


Asunto(s)
ADN Glicosilasas , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Zarigüeyas , Animales , Humanos , ADN/química , Daño del ADN , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Mamíferos/genética , Dedos de Zinc , Conformación Proteica
3.
PLoS Genet ; 17(9): e1009791, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570752

RESUMEN

Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. During gemination, spores must degrade their cortex layer, which is a thick, protective layer of modified peptidoglycan. Cortex degradation depends on the presence of the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL), which is specifically recognized by cortex lytic enzymes. In C. difficile, MAL production depends on the CwlD amidase and its binding partner, the GerS lipoprotein. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase_3 family members, we found that CwlD does not bind Zn2+ stably on its own, unlike previously characterized amidase_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to Zn2+, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of Zn2+ co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought.


Asunto(s)
Amidohidrolasas/metabolismo , Clostridioides difficile/fisiología , Lipoproteínas/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Regulación Alostérica , Amidohidrolasas/química , Catálisis , Dominio Catalítico , Cromatografía en Gel , Clostridioides difficile/enzimología , Cristalografía por Rayos X , Lactamas/metabolismo , Estructura Molecular , Ácidos Murámicos/metabolismo , Unión Proteica
4.
PLoS Genet ; 15(7): e1008224, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31276487

RESUMEN

The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/farmacología , Proteínas Portadoras/metabolismo , Clostridioides difficile/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Mutación , Conformación Proteica , Estrés Fisiológico
5.
Nucleic Acids Res ; 46(20): 10740-10756, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30239932

RESUMEN

DNA polymerase ß (pol ß) fills single nucleotide gaps in DNA during base excision repair and non-homologous end-joining. Pol ß must select the correct nucleotide from among a pool of four nucleotides with similar structures and properties in order to maintain genomic stability during DNA repair. Here, we use a combination of X-ray crystallography, fluorescence resonance energy transfer and nuclear magnetic resonance to show that pol ß's ability to access the appropriate conformations both before and upon binding to nucleotide substrates is integral to its fidelity. Importantly, we also demonstrate that the inability of the I260Q mutator variant of pol ß to properly navigate this conformational landscape results in error-prone DNA synthesis. Our work reveals that precatalytic conformational rearrangements themselves are an important underlying mechanism of substrate selection by DNA pol ß.


Asunto(s)
Codón sin Sentido , ADN Polimerasa beta/genética , Replicación del ADN/genética , ADN/química , Inestabilidad Genómica/genética , Conformación de Ácido Nucleico , Sustitución de Aminoácidos/genética , Catálisis , Cristalografía por Rayos X , ADN/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Reparación del ADN/genética , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoleucina/genética , Modelos Moleculares , Nucleótidos/química , Nucleótidos/metabolismo , Unión Proteica , Especificidad por Sustrato/genética , Moldes Genéticos
6.
Proteins ; 87(2): 157-167, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30520161

RESUMEN

The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Adenosina Trifosfatasas/química , Cisteína/química , Proteínas de Unión al ADN/química , Disulfuros/química , Dominios Proteicos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Disulfuros/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Ligandos , Lisina/química , Lisina/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Solubilidad , Termodinámica
7.
Biochemistry ; 56(18): 2363-2371, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28402631

RESUMEN

With the formidable growth in the volume of genetic information, it has become essential to identify and characterize mutations in macromolecules not only to predict contributions to disease processes but also to guide the design of therapeutic strategies. While mutations of certain residues have a predictable phenotype based on their chemical nature and known structural position, many types of mutations evade prediction based on current information. Described in this work are the crystal structures of two cancer variants located in the palm domain of DNA polymerase ß (pol ß), S229L and G231D, whose biological phenotype was not readily linked to a predictable structural implication. Structural results demonstrate that the mutations elicit their effect through subtle influences on secondary interactions with a residue neighboring the active site. Residues 229 and 231 are 7.5 and 12.5 Å, respectively, from the nearest active site residue, with a ß-strand between them. A residue on this intervening strand, M236, appears to transmit fine structural perturbations to the catalytic metal-coordinating residue D256, affecting its conformational stability.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Mutación , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa beta/genética , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Lámina beta , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
8.
Biochemistry ; 56(41): 5550-5559, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28945359

RESUMEN

DNA polymerases synthesize new DNA during DNA replication and repair, and their ability to do so faithfully is essential to maintaining genomic integrity. DNA polymerase ß (Pol ß) functions in base excision repair to fill in single-nucleotide gaps, and variants of Pol ß have been associated with cancer. Specifically, the E288K Pol ß variant has been found in colon tumors and has been shown to display sequence-specific mutator activity. To probe the mechanism that may underlie E288K's loss of fidelity, a fluorescence resonance energy transfer system that utilizes a fluorophore on the fingers domain of Pol ß and a quencher on the DNA substrate was employed. Our results show that E288K utilizes an overall mechanism similar to that of wild type (WT) Pol ß when incorporating correct dNTP. However, when inserting the correct dNTP, E288K exhibits a faster rate of closing of the fingers domain combined with a slower rate of nucleotide release compared to those of WT Pol ß. We also detect enzyme closure upon mixing with the incorrect dNTP for E288K but not WT Pol ß. Taken together, our results suggest that E288K Pol ß incorporates all dNTPs more readily than WT because of an inherent defect that results in rapid isomerization of dNTPs within its active site. Structural modeling implies that this inherent defect is due to interaction of E288K with DNA, resulting in a stable closed enzyme structure.


Asunto(s)
Neoplasias del Colon/enzimología , ADN Polimerasa beta/metabolismo , Reparación del ADN , Replicación del ADN , ADN/metabolismo , Modelos Moleculares , Mutación , Sustitución de Aminoácidos , Biocatálisis , Neoplasias del Colon/genética , ADN/química , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Estabilidad de Enzimas , Colorantes Fluorescentes/química , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Naftalenosulfonatos/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , p-Dimetilaminoazobenceno/análogos & derivados , p-Dimetilaminoazobenceno/química
9.
J Virol ; 89(8): 4636-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673718

RESUMEN

UNLABELLED: DNA polymerases of the Herpesviridae and bacteriophage RB69 belong to the α-like DNA polymerase family. In spite of similarities in structure and function, the RB69 enzyme is relatively resistant to foscarnet, requiring the mutation V478W in helix N to promote the closed conformation of the enzyme to make it susceptible to the antiviral. Here, we generated recombinant herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) mutants harboring the revertant in UL30 (W781V) and UL54 (W780V) DNA polymerases, respectively, to further investigate the impact of this tryptophan on antiviral drug susceptibility and viral replicative capacity. The mutation W781V in HSV-1 induced resistance to foscarnet, acyclovir, and ganciclovir (3-, 14-, and 3-fold increases in the 50% effective concentrations [EC50s], respectively). The recombinant HCMV mutant harboring the W780V mutation was slightly resistant to foscarnet (a 1.9-fold increase in the EC50) and susceptible to ganciclovir. Recombinant HSV-1 and HCMV mutants had altered viral replication kinetics. The apparent inhibition constant values of foscarnet against mutant UL30 and UL54 DNA polymerases were 45- and 4.9-fold higher, respectively, than those against their wild-type counterparts. Structural evaluation of the tryptophan position in the UL54 DNA polymerase suggests that the bulkier phenylalanine (fingers domain) and isoleucine (N-terminal domain) could induce a tendency toward the closed conformation greater than that for UL30 and explains the modest effect of the W780V mutation on foscarnet susceptibility. Our results further suggest a role of the tryptophan in helix N in conferring HCMV and especially HSV-1 susceptibility to foscarnet and the possible contribution of other residues localized at the interface between the fingers and N-terminal domains. IMPORTANCE: DNA polymerases of the Herpesviridae and bacteriophage RB69 belong to the α-like DNA polymerase family. However, the RB69 DNA polymerase is relatively resistant to the broad-spectrum antiviral agent foscarnet. The mutation V478W in helix N of the fingers domain caused the enzyme to adopt a closed conformation and to become susceptible to the antiviral. We generated recombinant herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) mutants harboring the revertant in UL30 (W781V) and UL54 (W780V) DNA polymerases, respectively, to further investigate the impact of this tryptophan on antiviral drug susceptibility. The W781V mutation in HSV-1 induced resistance to foscarnet, whereas the W780V mutation in HCMV slightly decreased drug susceptibility. This study suggests that the different profiles of susceptibility to foscarnet of the HSV-1 and HCMV mutants could be related to subtle conformational changes resulting from the interaction between residues specific to each enzyme that are located at the interface between the fingers and the N-terminal domains.


Asunto(s)
Citomegalovirus/enzimología , ADN Polimerasa Dirigida por ADN/genética , Farmacorresistencia Viral/genética , Herpesvirus Humano 1/enzimología , Modelos Moleculares , Mutación Missense/genética , Estructura Secundaria de Proteína/genética , Aciclovir , Análisis de Varianza , Animales , Antivirales/farmacología , Chlorocebus aethiops , ADN Polimerasa Dirigida por ADN/química , Foscarnet , Ganciclovir , Técnicas de Transferencia de Gen , Humanos , Cinética , Células Vero
10.
PLoS Pathog ; 9(2): e1003165, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23408892

RESUMEN

Spores are the major transmissive form of the nosocomial pathogen Clostridium difficile, a leading cause of healthcare-associated diarrhea worldwide. Successful transmission of C. difficile requires that its hardy, resistant spores germinate into vegetative cells in the gastrointestinal tract. A critical step during this process is the degradation of the spore cortex, a thick layer of peptidoglycan surrounding the spore core. In Clostridium sp., cortex degradation depends on the proteolytic activation of the cortex hydrolase, SleC. Previous studies have implicated Csps as being necessary for SleC cleavage during germination; however, their mechanism of action has remained poorly characterized. In this study, we demonstrate that CspB is a subtilisin-like serine protease whose activity is essential for efficient SleC cleavage and C. difficile spore germination. By solving the first crystal structure of a Csp family member, CspB, to 1.6 Å, we identify key structural domains within CspB. In contrast with all previously solved structures of prokaryotic subtilases, the CspB prodomain remains tightly bound to the wildtype subtilase domain and sterically occludes a catalytically competent active site. The structure, combined with biochemical and genetic analyses, reveals that Csp proteases contain a unique jellyroll domain insertion critical for stabilizing the protease in vitro and in C. difficile. Collectively, our study provides the first molecular insight into CspB activity and function. These studies may inform the development of inhibitors that can prevent clostridial spore germination and thus disease transmission.


Asunto(s)
Clostridioides difficile/química , Clostridioides difficile/fisiología , Infecciones por Clostridium/microbiología , Clostridium perfringens/química , Clostridium perfringens/fisiología , Serina Proteasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Clostridium perfringens/enzimología , Clostridium perfringens/genética , Humanos , Modelos Moleculares , Peptidoglicano/metabolismo , Estructura Terciaria de Proteína , Serina Proteasas/química , Serina Proteasas/genética , Esporas Bacterianas/enzimología , Esporas Bacterianas/fisiología , Subtilisina/química , Subtilisina/genética , Subtilisina/metabolismo
11.
Biochemistry ; 53(13): 2075-7, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24649945

RESUMEN

The first high-resolution crystal structure of spiroiminodihydantoin (dSp1) was obtained in the context of the DNA polymerase ß active site and reveals two areas of significance. First, the structure verifies the recently determined S configuration at the spirocyclic carbon. Second, the distortion of the DNA duplex is similar to that of the single-oxidation product 8-oxoguanine. For both oxidized lesions, adaptation of the syn conformation results in similar backbone distortions in the DNA duplex. The resulting conformation positions the dSp1 A-ring as the base-pairing face whereas the B-ring of dSp1 protrudes into the major groove.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Guanosina/análogos & derivados , Compuestos de Espiro/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , ADN Polimerasa beta/metabolismo , Guanosina/química , Guanosina/metabolismo , Humanos , Modelos Moleculares , Compuestos de Espiro/química , Moldes Genéticos
12.
J Biol Chem ; 288(48): 34850-60, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24133209

RESUMEN

DNA polymerase ß (pol ß) is responsible for gap filling synthesis during repair of damaged DNA as part of the base excision repair pathway. Human pol ß mutations were recently identified in a high percentage (∼30%) of tumors. Characterization of specific cancer variants is particularly useful to further the understanding of the general mechanism of pol ß while providing context to disease contribution. We showed that expression of the carcinoma variant E295K induces cellular transformation. The poor polymerase activity exhibited by the variant was hypothesized to be caused by the destabilization of proper active site assembly by the glutamate to lysine mutation. Here, we show that this variant exhibits an unusual preference for binding dCTP opposite a templating adenine over the cognate dTTP. Biochemical studies indicate that the noncognate competes with the cognate nucleotide for binding to the polymerase active site with the noncognate incorporation a function of higher affinity and not increased activity. In the crystal structure of the variant bound to dA:dCTP, the fingers domain closes around the mismatched base pair. Nucleotide incorporation is hindered because key residues in the polymerase active site are not properly positioned for nucleotidyl transfer. In contrast to the noncognate dCTP, neither the cognate dTTP nor its nonhydrolyzable analog induced fingers closure, as isomorphous difference Fourier maps show that the cognate nucleotides are bound to the open state of the polymerase. Comparison with published structures provides insight into the structural rearrangements within pol ß that occur during the process of nucleotide discrimination.


Asunto(s)
ADN Polimerasa beta/genética , Reparación del ADN/genética , Neoplasias/genética , Nucleótidos/genética , Relación Estructura-Actividad , Disparidad de Par Base/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Regulación Neoplásica de la Expresión Génica , Humanos , Cinética , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Nucleótidos/química , Conformación Proteica
13.
Proc Natl Acad Sci U S A ; 108(32): 13089-94, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21788477

RESUMEN

Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-Å resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of Fe(N)hTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergo pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same α-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.


Asunto(s)
Endosomas/metabolismo , Hierro/metabolismo , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Endocitosis , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Transferrina/química , Transferrina/química
14.
Proc Natl Acad Sci U S A ; 107(47): 20305-10, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059936

RESUMEN

All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA(His) guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-Å crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.


Asunto(s)
Guanosina/metabolismo , Modelos Moleculares , Nucleotidiltransferasas/química , ARN de Transferencia de Histidina/metabolismo , ADN Polimerasa Dirigida por ARN/química , Cristalografía , Evolución Molecular , Humanos , Estructura Molecular , Nucleotidiltransferasas/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo
15.
Structure ; 29(1): 29-42.e4, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32846144

RESUMEN

Oxidative damage on DNA arising from both endogenous and exogenous sources can result in base modifications that promote errors in replication as well as generating sites of base loss (abasic sites) that present unique challenges to maintaining genomic integrity. These lesions are excised by DNA glycosylases in the first step of the base excision repair pathway. Here we present the first crystal structure of a NEIL2 glycosylase, an enzyme active on cytosine oxidation products and abasic sites. The structure reveals an unusual "open" conformation not seen in NEIL1 or NEIL3 orthologs. NEIL2 is predicted to adopt a "closed" conformation when bound to its substrate. Combined crystallographic and solution-scattering studies show the enzyme to be conformationally dynamic in a manner distinct among the NEIL glycosylases and provide insight into the unique substrate preference of this enzyme. In addition, we characterized three cancer variants of human NEIL2, namely S140N, G230W, and G303R.


Asunto(s)
ADN Glicosilasas/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Sitios de Unión , ADN/química , ADN/metabolismo , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica
16.
Biochemistry ; 47(48): 12810-21, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-18986163

RESUMEN

Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to function at acidic pH.


Asunto(s)
Selenio/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Ácido Ditionitrobenzoico/metabolismo , Drosophila melanogaster/enzimología , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Análisis Espectral , Sulfuros/química
17.
FEBS Lett ; 588(21): 3844-54, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25281266

RESUMEN

Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ HAT complex and contains a unique combination of domains typically found in chromatin-associated factors, which include plant homeodomain (PHD) fingers, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. Bromodomains are conserved structural motifs generally known to recognize acetylated histones, and the BRPF1 bromodomain preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We solved the X-ray crystal structures of the BRPF1 bromodomain in complex with the H2AK5ac and H4K12ac histone peptides. Site-directed mutagenesis on residues in the BRPF1 bromodomain-binding pocket was carried out to investigate the contribution of specific amino acids on ligand binding. Our results provide critical insights into the molecular mechanism of ligand binding by the BRPF1 bromodomain, and reveal that ordered water molecules are an essential component driving ligand recognition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilación , Proteínas de Unión al ADN , Histonas/química , Humanos , Ligandos , Lisina/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida , Unión Proteica , Estructura Terciaria de Proteína
18.
DNA Repair (Amst) ; 12(12): 1062-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24120312

RESUMEN

Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process.


Asunto(s)
ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Mimiviridae/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Dedos de Zinc , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Clonación Molecular , Secuencia de Consenso , Cristalografía por Rayos X , Daño del ADN/genética , ADN Glicosilasas/genética , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Mimiviridae/genética , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia , Proteínas Virales/genética
19.
PLoS One ; 8(7): e67465, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844012

RESUMEN

All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His) guanylyltransferase (Thg1) enzymes catalyze the unusual reverse addition (3' to 5') of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His), a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs) are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His). Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His) maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP). The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.


Asunto(s)
Bacillus thuringiensis , Nucleótidos/química , Nucleotidiltransferasas/química , ARN de Transferencia de Histidina/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/metabolismo , Sitios de Unión , Dominio Catalítico , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
20.
Protein Sci ; 19(9): 1616-26, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20572014

RESUMEN

The original signature of the transferrin (TF) family of proteins was the ability to bind ferric iron with high affinity in the cleft of each of two homologous lobes. However, in recent years, new family members that do not bind iron have been discovered. One new member is the inhibitor of carbonic anhydrase (ICA), which as its name indicates, binds to and strongly inhibits certain isoforms of carbonic anhydrase. Recently, mouse ICA has been expressed as a recombinant protein in a mammalian cell system. Here, we describe the 2.4 Å structure of mouse ICA from a pseudomerohedral twinned crystal. As predicted, the structure is bilobal, comprised of two α-ß domains per lobe typical of the other family members. As with all but insect TFs, the structure includes the unusual reverse γ-turn in each lobe. The structure is consistent with the fact that introduction of two mutations in the N-lobe of murine ICA (mICA) (W124R and S188Y) allowed it to bind iron with high affinity. Unexpectedly, both lobes of the mICA were found in the closed conformation usually associated with presence of iron in the cleft, and making the structure most similar to diferric pig TF. Two new ICA family members (guinea pig and horse) were identified from genomic sequences and used in evolutionary comparisons. Additionally, a comparison of selection pressure (dN/dS) on functional residues reveals some interesting insights into the evolution of the TF family including that the N-lobe of lactoferrin may be in the process of eliminating its iron binding function.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/química , Transferrina/química , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Aniones/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Cristalografía por Rayos X , Hierro/metabolismo , Ratones , Filogenia , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Transferrina/genética , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA