Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 166(6): 1572-1584.e16, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27594427

RESUMEN

P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets. Using theory, we show that, in a MEX-5 gradient, this mRNA competition mechanism can drive a gradient of P granule assembly with similar spatial and temporal characteristics to P granule assembly in vivo. We conclude that gradients of polarity proteins can position RNP granules during development by using RNA competition to regulate local phase separation.


Asunto(s)
Caenorhabditis elegans/metabolismo , ARN Mensajero/metabolismo , Animales , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Embrión no Mamífero , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Modelos Teóricos , Unión Proteica , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/metabolismo
2.
Nucleic Acids Res ; 47(20): 10881-10893, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31511882

RESUMEN

RNA-modifying enzymes targeting mRNA poly(A) tails are universal regulators of post-transcriptional gene expression programs. Current data suggest that an RNA-binding protein (RBP) directed tug-of-war between tail shortening and re-elongating enzymes operates in the cytoplasm to repress or activate specific mRNA targets. While this concept is widely accepted, it was primarily described in the final meiotic stages of frog oogenesis and relies molecularly on a single class of RBPs, i.e. CPEBs, the deadenylase PARN and cytoplasmic poly(A) polymerase GLD-2. Using the spatial and temporal resolution of female gametogenesis in the nematode C. elegans, we determined the distinct roles of known deadenylases throughout germ cell development and discovered that the Ccr4-Not complex is the main antagonist to GLD-2-mediated mRNA regulation. We find that the Ccr4-Not/GLD-2 balance is critical for essentially all steps of oocyte production and reiteratively employed by various classes of RBPs. Interestingly, its two deadenylase subunits appear to affect mRNAs stage specifically: while a Caf1/GLD-2 antagonism regulates mRNA abundance during all stages of oocyte production, a Ccr4/GLD-2 antagonism regulates oogenesis in an mRNA abundance independent manner. Our combined data suggests that the Ccr4-Not complex represents the evolutionarily conserved molecular opponent to GLD-2 providing an antagonistic framework of gene-specific poly(A)-tail regulation.


Asunto(s)
Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Oogénesis/genética , Poli A/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Proliferación Celular , Meiosis , Poliadenilación , Profase/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(12): E2772-E2781, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29496961

RESUMEN

RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Meiosis/fisiología , Oocitos/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Oocitos/metabolismo , Oogénesis/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
RNA ; 23(8): 1180-1187, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28490506

RESUMEN

The role of many enzymes extends beyond their dedicated catalytic activity by fulfilling important cellular functions in a catalysis-independent fashion. In this aspect, little is known about 3'-end RNA-modifying enzymes that belong to the class of nucleotidyl transferases. Among these are noncanonical poly(A) polymerases, a group of evolutionarily conserved enzymes that are critical for gene expression regulation, by adding adenosines to the 3'-end of RNA targets. In this study, we investigate whether the functions of the cytoplasmic poly(A) polymerase (cytoPAP) GLD-2 in C. elegans germ cells exclusively depend on its catalytic activity. To this end, we analyzed a specific missense mutation affecting a conserved amino acid in the catalytic region of GLD-2 cytoPAP. Although this mutated protein is expressed to wild-type levels and incorporated into cytoPAP complexes, we found that it cannot elongate mRNA poly(A) tails efficiently or promote GLD-2 target mRNA abundance. Furthermore, germ cell defects in animals expressing this mutant protein strongly resemble those lacking the GLD-2 protein altogether, arguing that only the polyadenylation activity of GLD-2 is essential for gametogenesis. In summary, we propose that all known molecular and biological functions of GLD-2 depend on its enzymatic activity, demonstrating that polyadenylation is the key mechanism of GLD-2 functionality. Our findings highlight the enzymatic importance of noncanonical poly(A) polymerases and emphasize the pivotal role of poly(A) tail-centered cytoplasmic mRNA regulation in germ cell biology.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Poli A/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Procesamiento Postranscripcional del ARN , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Mutación Missense/genética , Poliadenilación , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , Alineación de Secuencia
5.
RNA ; 22(8): 1139-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288313

RESUMEN

Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2-GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2-RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimología , Polinucleotido Adenililtransferasa/metabolismo , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Animales , Proteínas de Caenorhabditis elegans/fisiología , Cristalografía por Rayos X , Polinucleotido Adenililtransferasa/química , Polinucleotido Adenililtransferasa/fisiología , Conformación Proteica , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas/fisiología
6.
Proc Natl Acad Sci U S A ; 112(28): 8614-9, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124149

RESUMEN

The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain typical of the canonical nuclear poly(A)-polymerase Pap1. The activity of C. elegans GLD-2 in vivo and in vitro depends on its association with the multi-K homology (KH) domain-containing protein, GLD-3, a homolog of Bicaudal-C. We have identified a minimal polyadenylation complex that includes the conserved nucleotidyl-transferase core of GLD-2 and the N-terminal domain of GLD-3, and determined its structure at 2.3-Å resolution. The structure shows that the N-terminal domain of GLD-3 does not fold into the predicted KH domain but wraps around the catalytic domain of GLD-2. The picture that emerges from the structural and biochemical data are that GLD-3 activates GLD-2 both indirectly by stabilizing the enzyme and directly by contributing positively charged residues near the RNA-binding cleft. The RNA-binding cleft of GLD-2 has distinct structural features compared with the poly(A)-polymerases Pap1 and Trf4. Consistently, GLD-2 has distinct biochemical properties: It displays unusual specificity in vitro for single-stranded RNAs with at least one adenosine at the 3' end. GLD-2 thus appears to have evolved specialized nucleotidyl-transferase properties that match the 3' end features of dormant cytoplasmic mRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Citoplasma/enzimología , Polinucleotido Adenililtransferasa/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Cristalografía por Rayos X , Modelos Moleculares , Proteínas Asociadas a Pancreatitis , Polinucleotido Adenililtransferasa/química , Conformación Proteica , Proteínas de Unión al ARN/química
7.
Proc Natl Acad Sci U S A ; 112(23): 7189-94, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26015579

RESUMEN

P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA-protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA-protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , ARN Helicasas/fisiología , Viscosidad , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , ARN Helicasas/química , ARN de Helminto/química
8.
PLoS Genet ; 10(9): e1004647, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254367

RESUMEN

To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Biosíntesis de Proteínas , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Proliferación Celular , Ciclina E/metabolismo , Genes Reporteros , Meiosis , Motivos de Nucleótidos , Polinucleotido Adenililtransferasa/genética , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Receptores Notch/metabolismo
9.
Genes Dev ; 23(7): 824-36, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19339688

RESUMEN

Translational regulation is heavily employed during developmental processes to control the timely accumulation of proteins independently of gene transcription. In particular, mRNA poly(A) tail metabolism in the cytoplasm is a key determinant for balancing an mRNA's translational output and its decay rate. Noncanonical poly(A) polymerases (PAPs), such as germline development defective-2 (GLD-2), can mediate poly(A) tail extension. Little is known about the regulation and functional complexity of cytoplasmic PAPs. Here we report the discovery of Caenorhabditis elegans GLD-4, a cytoplasmic PAP present in P granules that is orthologous to Trf4/5p from budding yeast. GLD-4 enzymatic activity is enhanced by its interaction with GLS-1, a protein associated with the RNA-binding protein GLD-3. GLD-4 is predominantly expressed in germ cells, and its activity is essential for early meiotic progression of male and female gametes in the absence of GLD-2. For commitment into female meiosis, both PAPs converge on at least one common target mRNA-i.e., gld-1 mRNA-and, as a consequence, counteract the repressive action of two PUF proteins and the putative deadenylase CCR-4. Together our findings suggest that two different cytoplasmic PAPs stabilize and translationally activate several meiotic mRNAs to provide a strong fail-safe mechanism for early meiotic progression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Meiosis/fisiología , Polinucleotido Adenililtransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Secuencia Conservada , Citoplasma/metabolismo , Trastornos del Desarrollo Sexual/metabolismo , Regulación Enzimológica de la Expresión Génica , Orden Génico , Células Germinativas/metabolismo , Filogenia , Polinucleotido Adenililtransferasa/química , Polinucleotido Adenililtransferasa/genética , Unión Proteica , Estabilidad del ARN , Alineación de Secuencia
10.
Nucleic Acids Res ; 42(18): 11622-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25217583

RESUMEN

Post-transcriptional gene regulation mechanisms decide on cellular mRNA activities. Essential gatekeepers of post-transcriptional mRNA regulation are broadly conserved mRNA-modifying enzymes, such as cytoplasmic poly(A) polymerases (cytoPAPs). Although these non-canonical nucleotidyltransferases efficiently elongate mRNA poly(A) tails in artificial tethering assays, we still know little about their global impact on poly(A) metabolism and their individual molecular roles in promoting protein production in organisms. Here, we use the animal model Caenorhabditis elegans to investigate the global mechanisms of two germline-enriched cytoPAPs, GLD-2 and GLD-4, by combining polysome profiling with RNA sequencing. Our analyses suggest that GLD-2 activity mediates mRNA stability of many translationally repressed mRNAs. This correlates with a general shortening of long poly(A) tails in gld-2-compromised animals, suggesting that most if not all targets are stabilized via robust GLD-2-mediated polyadenylation. By contrast, only mild polyadenylation defects are found in gld-4-compromised animals and few mRNAs change in abundance. Interestingly, we detect a reduced number of polysomes in gld-4 mutants and GLD-4 protein co-sediments with polysomes, which together suggest that GLD-4 might stimulate or maintain translation directly. Our combined data show that distinct cytoPAPs employ different RNA-regulatory mechanisms to promote gene expression, offering new insights into translational activation of mRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Polinucleotido Adenililtransferasa/fisiología , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Animales , Caenorhabditis elegans/genética , Poli A/metabolismo , Polirribosomas/metabolismo
11.
J Cell Sci ; 126(Pt 18): 4274-85, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843623

RESUMEN

Post-transcriptional regulatory mechanisms are widely used to control gene expression programs of tissue development and physiology. Controlled 3' poly(A) tail-length changes of mRNAs provide a mechanistic basis of such regulation, affecting mRNA stability and translational competence. Deadenylases are a conserved class of enzymes that facilitate poly(A) tail removal, and their biochemical activities have been mainly studied in the context of single-cell systems. Little is known about the different deadenylases and their biological role in multicellular organisms. In this study, we identify and characterize all known deadenylases of Caenorhabditis elegans, and identify the germ line as tissue that depends strongly on deadenylase activity. Most deadenylases are required for hermaphrodite fertility, albeit to different degrees. Whereas ccr-4 and ccf-1 deadenylases promote germline function under physiological conditions, panl-2 and parn-1 deadenylases are only required under heat-stress conditions. We also show that the Ccr4-Not core complex in nematodes is composed of the two catalytic subunits CCR-4 and CCF-1 and the structural subunit NTL-1, which we find to regulate the stability of CCF-1. Using bulk poly(A) tail measurements with nucleotide resolution, we detect strong deadenylation defects of mRNAs at the global level only in the absence of ccr-4, ccf-1 and ntl-1, but not of panl-2, parn-1 and parn-2. Taken together, this study suggests that the Ccr4-Not complex is the main deadenylase complex in C. elegans germ cells. On the basis of this and as a result of evidence in flies, we propose that the conserved Ccr4-Not complex is an essential component in post-transcriptional regulatory networks promoting animal reproduction.


Asunto(s)
Poli A/genética , ARN Mensajero/genética , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genómica , Células Germinativas , Poli A/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción
12.
RNA Biol ; 11(2): 111-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24526206

RESUMEN

Poly(A) tail length is a readout of an mRNA's translatability and stability, especially in developmental systems. PolyAdenylation Test (PAT) assays attempt to quickly measure the average poly(A) tail length of RNAs of experimental interest. Here we present sPAT, splint-mediated PAT, a procedure that uses a DNA splint to aid in the ligation of an RNA-tag to the poly(A) tail of an mRNA. In comparison to other PAT methodologies, including ePAT, sPAT is highly sensitive to low-abundance mRNAs, gives a more accurate profile of the poly(A) tail distribution, and requires little starting material. To demonstrate its strength, we calibrated sPAT on defined poly(A) tails of synthetic mRNAs, reassessed developmentally regulated poly(A) tail-length changes of known mRNAs from established model organisms, and extended it to the emerging evolutionary developmental nematode model Pristionchus pacificus. Lastly, we used sPAT to analyze the contribution of the two cytoplasmic poly(A) polymerases GLD-2 and GLD-4, and the deadenylase CCR-4, onto Caenorhabditis elegans gld-1 mRNA that encodes a translationally controlled tumor suppressor whose poly(A) tail length measurement proved elusive.


Asunto(s)
ADN de Cadena Simple/metabolismo , Técnicas Genéticas , Poli A/metabolismo , ARN Mensajero/metabolismo , Animales , Evolución Molecular , Modelos Animales , Filogenia , Estabilidad del ARN , Reproducibilidad de los Resultados
14.
Adv Exp Med Biol ; 757: 205-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22872479

RESUMEN

Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas , Biosíntesis de Proteínas , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
15.
RNA ; 16(11): 2058-67, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20823118

RESUMEN

Caenorhabditis elegans GLD-3 is a five K homology (KH) domain-containing protein involved in the translational control of germline-specific mRNAs during embryogenesis. GLD-3 interacts with the cytoplasmic poly(A)-polymerase GLD-2. The two proteins cooperate to recognize target mRNAs and convert them into a polyadenylated, translationally active state. We report the 2.8-Å-resolution crystal structure of a proteolytically stable fragment encompassing the KH2, KH3, KH4, and KH5 domains of C. elegans GLD-3. The structure reveals that the four tandem KH domains are organized into a globular structural unit. The domains are involved in extensive side-by-side interactions, similar to those observed in previous structures of dimeric KH domains, as well as head-to-toe interactions. Small-angle X-ray scattering reconstructions show that the N-terminal KH domain (KH1) forms a thumb-like protrusion on the KH2-KH5 unit. Although KH domains are putative RNA-binding modules, the KH region of GLD-3 is unable in isolation to cross-link RNA. Instead, the KH1 domain mediates the direct interaction with the poly(A)-polymerase GLD-2, pointing to a function of the KH region as a protein-protein interaction platform.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Pliegue de Proteína , Proteínas de Unión al ARN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia
16.
PLoS Genet ; 5(5): e1000494, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19461891

RESUMEN

Post-transcriptional regulatory mechanisms are widely used to influence cell fate decisions in germ cells, early embryos, and neurons. Many conserved cytoplasmic RNA regulatory proteins associate with each other and assemble on target mRNAs, forming ribonucleoprotein (RNP) complexes, to control the mRNAs translational output. How these RNA regulatory networks are orchestrated during development to regulate cell fate decisions remains elusive. We addressed this problem by focusing on Caenorhabditis elegans germline development, an exemplar of post-transcriptional control mechanisms. Here, we report the discovery of GLS-1, a new factor required for many aspects of germline development, including the oocyte cell fate in hermaphrodites and germline survival. We find that GLS-1 is a cytoplasmic protein that localizes in germ cells dynamically to germplasm (P) granules. Furthermore, its functions depend on its ability to form a protein complex with the RNA-binding Bicaudal-C ortholog GLD-3, a translational activator and P granule component important for similar germ cell fate decisions. Based on genetic epistasis experiments and in vitro competition experiments, we suggest that GLS-1 releases FBF/Pumilio from GLD-3 repression. This facilitates the sperm-to-oocyte switch, as liberated FBF represses the translation of mRNAs encoding spermatogenesis-promoting factors. Our proposed molecular mechanism is based on the GLS-1 protein acting as a molecular mimic of FBF/Pumilio. Furthermore, we suggest that a maternal GLS-1/GLD-3 complex in early embryos promotes the expression of mRNAs encoding germline survival factors. Our work identifies GLS-1 as a fundamental regulator of germline development. GLS-1 directs germ cell fate decisions by modulating the availability and activity of a single translational network component, GLD-3. Hence, the elucidation of the mechanisms underlying GLS-1 functions provides a new example of how conserved machinery can be developmentally manipulated to influence cell fate decisions and tissue development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Supervivencia Celular , Mapeo Cromosómico , Gránulos Citoplasmáticos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Células Germinativas/citología , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Oocitos/citología , Oocitos/metabolismo , Oogénesis/genética , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN de Helminto/genética , ARN de Helminto/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Procesos de Determinación del Sexo , Espermatozoides/citología , Espermatozoides/metabolismo
17.
PLoS Genet ; 5(10): e1000702, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19851446

RESUMEN

Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins--HORMAD1 and HORMAD2--in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiosis , Complejo Sinaptonémico/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Sci Adv ; 8(41): eabn0897, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240265

RESUMEN

How the germ line achieves a clean transition from maternal to zygotic gene expression control is a fundamental problem in sexually reproducing organisms. Whereas several mechanisms terminate the maternal program in the soma, this combined molecular reset and handover are poorly understood for primordial germ cells (PGCs). Here, we show that GRIF-1, a TRIM32-related and presumed E3 ubiquitin ligase in Caenorhabditis elegans, eliminates the maternal cytoplasmic poly(A) polymerase (cytoPAP) complex by targeting the germline-specific intrinsically disordered region of its enzymatic subunit, GLD-2, for proteasome-mediated degradation. Interference with cytoPAP turnover in PGCs causes frequent transgenerational sterility and, eventually, germline mortality. Hence, positively acting maternal RNA regulators are cleared via the proteasome system to avoid likely interference between maternal and zygotic gene expression programs to maintain transgenerational fertility and acquire germline immortality. This strategy is likely used in all animals that preform their immortal germ line via maternally inherited germplasm determinants.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN/metabolismo , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Dev Biol ; 344(2): 758-71, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20595048

RESUMEN

Ste20 kinases constitute a large family of serine/threonine kinases with a plethora of biological functions. Members of the GCK-VI subfamily have been identified as important regulators of osmohomeostasis across species functioning upstream of ion channels. Although the expression of the two highly similar mammalian GCK-VI kinases is eminent in a wide variety of tissues, which includes also the testis, their potential roles in development remain elusive. Caenorhabditis elegans contains a single ancestral ortholog termed GCK-3. Here, we report a comprehensive analysis of gck-3 function and demonstrate its requirement for several developmental processes independent of ion homeostasis, i.e., larval progression, vulva, and germ line formation. Consistent with a wide range of gck-3 function we find that endogenous GCK-3 is expressed ubiquitously. The serine/threonine kinase activity of GCK-3, but not its presumed C-terminal substrate interaction domain, is essential for gck-3 gene function. Although expressed in female germ cells, we find GCK-3 progressively accumulating during spermatogenesis where it promotes the first meiotic cell division and facilitates faithful chromosome segregation. In particular, we find that different levels of gck-3 activity appear to be important for various aspects of germ line development. Taken together, our findings suggest that members of the GCK-VI kinase subfamily may act as key regulators of many developmental processes and that this newly described role in meiotic progression might be conserved and an important part of sexual reproduction.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , División Celular , Segregación Cromosómica , Femenino , Genes , Células Germinativas/metabolismo , Masculino , Meiosis , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Vulva/metabolismo
20.
Dev Cell ; 3(5): 697-710, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12431376

RESUMEN

The FBF RNA binding proteins control multiple aspects of C. elegans germline development, including sex determination. FBF promotes the oocyte fate at the expense of spermatogenesis by binding a regulatory element in the fem-3 3'UTR and repressing this sex-determining gene. Here we report the discovery of GLD-3, a Bicaudal-C homolog and cytoplasmic protein that physically interacts with FBF. Using RNAi and a gld-3 deletion mutant, we show that GLD-3 promotes the sperm fate, a sex determination effect opposite to that of FBF. By epistasis analysis, GLD-3 acts upstream of FBF, and, in a yeast three-hybrid assay, GLD-3 interferes specifically with FBF binding to the fem-3 3'UTR. We propose that GLD-3 binds FBF and thereby inhibits its repression of target mRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/metabolismo , Procesos de Determinación del Sexo , Espermatozoides/fisiología , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Citoplasma/metabolismo , Proteínas de Drosophila , Femenino , Masculino , Datos de Secuencia Molecular , Proteínas de Unión al ARN/genética , Espermatogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA