Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Access Microbiol ; 5(10)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970082

RESUMEN

Background: As the COVID-19 pandemic continues, efforts to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral shedding and transmission in both unvaccinated and vaccinated populations remain critical to informing public health policies and vaccine development. The utility of using real time RT-PCR cycle threshold values (CT values) as a proxy for infectious viral litres from individuals infected with SARS-CoV-2 is yet to be fully understood. This retrospective observational cohort study compares quantitative infectious viral litres derived from a focus-forming viral titre assay with SARS-CoV-2 RT-PCR CT values in both unvaccinated and vaccinated individuals infected with the Delta strain. Methods: Nasopharyngeal swabs positive for SARS-CoV-2 by RT-PCR with a CT value <27 collected from 26 June to 17 October 2021 at the University of Vermont Medical Center Clinical Laboratory for which vaccination records were available were included. Partially vaccinated and individuals <18 years of age were excluded. Infectious viral litres were determined using a micro-focus forming assay under BSL-3 containment. Results: In total, 119 specimens from 22 unvaccinated and 97 vaccinated individuals met all inclusion criteria and had sufficient residual volume to undergo viral titring. A negative correlation between RT-PCR CT values and viral litres was observed in both unvaccinated and vaccinated groups. No difference in mean CT value or viral titre was detected between vaccinated and unvaccinated groups. Viral litres did not change as a function of time since vaccination. Conclusions: Our results add to the growing body of knowledge regarding the correlation of SARS-CoV-2 RNA levels and levels of infectious virus. At similar CT values, vaccination does not appear to impact an individual's potential infectivity when infected with the Delta variant.

2.
Animals (Basel) ; 11(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072244

RESUMEN

Bats are capable of asymptomatically carrying a diverse number of microorganisms, including human pathogens, due to their unique immune system. Because of the close contact between bats and humans, there is a possibility for interspecies transmission and consequential disease outbreaks. Herein, high-throughput sequencing was used to determine the kidney-associated microbiome of a bat species abundant in Grenada, West Indies, Artibeus spp. Results indicate that the kidney of these bats can carry potential human pathogens. An endogenous retrovirus, Desmodus rotundus endogenous retrovirus isolate 824, phylogenetically related to betaretroviruses from rodents and New World primates, was also identified.

3.
J Biomol Tech ; 32(3): 199-205, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35027877

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a power tool for the amplification of specific RNA and DNA targets. Much like PCR, LAMP requires primers that surround a target amplification region and generates exponential product through a unique highly specific daisy-chain single-temperature amplification reaction. However, until recently, attempts to amplify targets of greater than 200 base pairs (bp) have been mostly unsuccessful and limited to short amplicon targets of less than 150 bp. Although short amplicons have the benefit of a rapid detection (<40 min), they do not allow for the prediction of RNA integrity based on RNA length and possible intactness. In this study, 8 primer sets were developed using 2 LAMP primer-specific software packages against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid gene with insert lengths ranging from 262 to 945 bp in order to amplify and infer the integrity of viral RNA. Because these amplification lengths are greater than the current methods that use an insert length of 130 or less, they require a longer incubation, modified primer and temperature strategies, and the addition of specific adjuncts to prevent nonspecific amplification. This proof of concept study resulted in successful reverse transcription LAMP reactions for amplicon targets of 262, 687, 693, and 945 bp using a clinical nasopharyngeal NP sample, purified SARS-CoV-2 RNA, and crude lysate containing inactivated virus.


Asunto(s)
COVID-19 , Transcripción Reversa , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad
4.
Nat Commun ; 12(1): 3054, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031380

RESUMEN

About 20-25% of dengue virus (DENV) infections become symptomatic ranging from self-limiting fever to shock. Immune gene expression changes during progression to severe dengue have been documented in hospitalized patients; however, baseline or kinetic information is difficult to standardize in natural infection. Here we profile the host immunotranscriptome response in humans before, during, and after infection with a partially attenuated rDEN2Δ30 challenge virus (ClinicalTrials.gov NCT02021968). Inflammatory genes including type I interferon and viral restriction pathways are induced during DENV2 viremia and return to baseline after viral clearance, while others including myeloid, migratory, humoral, and growth factor immune regulation factors pathways are found at non-baseline levels post-viremia. Furthermore, pre-infection baseline gene expression is useful to predict rDEN2Δ30-induced immune responses and the development of rash. Our results suggest a distinct immunological profile for mild rDEN2Δ30 infection and offer new potential biomarkers for characterizing primary DENV infection.


Asunto(s)
Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Virus del Dengue/genética , Virus del Dengue/inmunología , Dengue/inmunología , Serogrupo , Anticuerpos Neutralizantes , Dengue/virología , Regulación de la Expresión Génica , Humanos , Inmunogenética , Interferón Tipo I/genética , Dengue Grave , Transcriptoma , Viremia
5.
PLoS One ; 15(1): e0227998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32004323

RESUMEN

Arboviruses cause diseases of significant global health concerns. Interactions between mosquitoes and their microbiota as well as the important role of this interaction in the mosquito's capacity to harbor and transmit pathogens have emerged as important fields of research. Aedes aegypti is one of the most abundant mosquitoes in many geographic locations, a vector capable of transmitting a number of arboviruses such as dengue and Zika. Currently, there are few studies on the metavirome of this mosquito particularly in the Americas. This study analyzes the metavirome of A. aegypti from Grenada, a Caribbean nation with tropical weather, abundant A. aegypti, and both endemic and arboviral pathogens transmitted by this mosquito. Between January and December 2018, 1152 mosquitoes were collected from six semi-rural locations near houses in St. George Parish, Grenada, by weekly trapping using BG-Sentinel traps. From these, 300 A. aegypti were selected for analysis. The metavirome was analyzed using the Illumina HiSeq 1500 for deep sequencing. The generation sequencing library construction protocol used was NuGEN Universal RNA with an average read length of 125 bp. Reads were mapped to the A. aegypti assembly. Non-mosquito reads were analyzed using the tools FastViromeExplorer. The NCBI total virus, RNA virus, and eukaryotic virus databases were used as references. The metagenomic comparison analysis showed that the most abundant virus-related reads among all databases and assemblies was Phasi Charoen-like virus. The Phasi Charoen-like virus results are in agreement to other studies in America, Asia and Australia. Further studies using wild-caught mosquitoes is needed to assess the impact of this insect-specific virus on the A. aegypti lifecycle and vector capacity.


Asunto(s)
Aedes/virología , Arbovirus , Genoma Viral/genética , Virus de Insectos , Metagenoma , Animales , Arbovirus/clasificación , Arbovirus/genética , Grenada , Virus de Insectos/clasificación , Virus de Insectos/genética , Mosquitos Vectores/virología
6.
PLoS One ; 15(4): e0231047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32282857

RESUMEN

The mosquitoes Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) are two major vectors of arthropod-borne pathogens in Grenada, West Indies. As conventional vector control methods present many challenges, alternatives are urgently needed. Manipulation of mosquito microbiota is emerging as a field for the development of vector control strategies. Critical to this vector control approach is knowledge of the microbiota of these mosquitoes and finding candidate microorganisms that are common to the vectors with properties that could be used in microbiota modification studies. Results showed that bacteria genera including Asaia, Escherichia, Pantoea, Pseudomonas, and Serratia are common to both major arboviral vectors in Grenada and have previously been shown to be good candidates for transgenetic studies. Also, for the first time, the presence of Grenada mosquito rhabdovirus 1 is reported in C. quinquefasciatus.


Asunto(s)
Aedes/genética , Culex/genética , Genoma de los Insectos/genética , Metagenómica , Aedes/microbiología , Aedes/virología , Animales , Culex/microbiología , Culex/virología , Femenino , Grenada , Masculino , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA