Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(23): e111344, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031863

RESUMEN

Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a ß-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.


Asunto(s)
Pliegue de Proteína , Señales de Clasificación de Proteína , Señales de Clasificación de Proteína/genética , Proteínas/metabolismo , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
2.
Microb Cell Fact ; 23(1): 13, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183102

RESUMEN

BACKGROUND: S. lividans TK24 is a popular host for the production of small molecules and the secretion of heterologous protein. Within its large genome, twenty-nine non-essential clusters direct the biosynthesis of secondary metabolites. We had previously constructed ten chassis strains, carrying deletions in various combinations of specialized metabolites biosynthetic clusters, such as those of the blue actinorhodin (act), the calcium-dependent antibiotic (cda), the undecylprodigiosin (red), the coelimycin A (cpk) and the melanin (mel) clusters, as well as the genes hrdD, encoding a non-essential sigma factor, and matAB, a locus affecting mycelial aggregation. Genome reduction was aimed at reducing carbon flow toward specialized metabolite biosynthesis to optimize the production of secreted heterologous protein. RESULTS: Two of these S. lividans TK24 derived chassis strains showed ~ 15% reduction in biomass yield, 2-fold increase of their total native secretome mass yield and enhanced abundance of several secreted proteins compared to the parental strain. RNAseq and proteomic analysis of the secretome suggested that genome reduction led to cell wall and oxidative stresses and was accompanied by the up-regulation of secretory chaperones and of secDF, a Sec-pathway component. Interestingly, the amount of the secreted heterologous proteins mRFP and mTNFα, by one of these strains, was 12 and 70% higher, respectively, than that secreted by the parental strain. CONCLUSION: The current study described a strategy to construct chassis strains with enhanced secretory abilities and proposed a model linking the deletion of specialized metabolite biosynthetic clusters to improved production of secreted heterologous proteins.


Asunto(s)
Proteómica , Streptomyces lividans , Streptomyces lividans/genética , Transporte de Proteínas , Transporte Biológico , Regulación hacia Arriba
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845009

RESUMEN

Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein-like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen-Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Escherichia coli/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Espectrometría de Masas , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Proteínas/genética
4.
Proc Natl Acad Sci U S A ; 117(46): 29090-29100, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33122432

RESUMEN

TRPM3 channels play important roles in the detection of noxious heat and in inflammatory thermal hyperalgesia. The activity of these ion channels in somatosensory neurons is tightly regulated by µ-opioid receptors through the signaling of Gßγ proteins, thereby reducing TRPM3-mediated pain. We show here that Gßγ directly binds to a domain of 10 amino acids in TRPM3 and solve a cocrystal structure of this domain together with Gßγ. Using these data and mutational analysis of full-length proteins, we pinpoint three amino acids in TRPM3 and their interacting partners in Gß1 that are individually necessary for TRPM3 inhibition by Gßγ. The 10-amino-acid Gßγ-interacting domain in TRPM3 is subject to alternative splicing. Its inclusion in or exclusion from TRPM3 channel proteins therefore provides a mechanism for switching on or off the inhibitory action that Gßγ proteins exert on TRPM3 channels.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/farmacología , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/farmacología , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/efectos de los fármacos , Canales Catiónicos TRPM/metabolismo , Sitios de Unión , Calcio/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Modelos Moleculares , Mutación , Neuronas/metabolismo , Dolor/metabolismo , Receptores Opioides/metabolismo , Canales Catiónicos TRPM/genética
5.
EMBO Rep ; 21(6): e49054, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32307852

RESUMEN

Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.


Asunto(s)
Proteínas de Escherichia coli , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibrinógeno , Unión Proteica , Canales de Translocación SEC/genética , Vías Secretoras
6.
EMBO J ; 36(23): 3517-3531, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109154

RESUMEN

Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.


Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Membrana Celular/metabolismo , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/genética
7.
Anal Chem ; 93(49): 16341-16349, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34841860

RESUMEN

With differential hydrogen/deuterium exchange, differences in the structure and dynamics of protein states can be studied. Detecting statistically significant differentially deuterated peptides is crucial to draw meaningful conclusions about the distinct conformations and dynamics of the protein under study. Here, we introduced a linear model in combination with an empirical Bayes approach to detect differentially deuterated peptides. Using a linear model allows one to test for differences in deuteration between two (two-sample t-test) or more groups (F-statistic), while potentially controlling for the effects of other variables that are not of interest. The empirical Bayes approach improves the estimation of deuteration-level variances, especially in experiments with a low number of replicates. As a consequence, the two sample t-tests and the F-statistic become moderated, resulting in a lower number of false positive and false negative findings. Furthermore, we introduce a thresholded-moderated t-statistic to test if the observed deuteration differences are larger than a specified, biologically relevant difference. Finally, we underline the importance of having a sufficient number of replicates, and the effect of the number of replicates on the power of the statistical significance tests. The R-code for the proposed moderated test statistics is available upon request.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Hidrógeno , Teorema de Bayes , Deuterio , Proteínas
8.
Anal Chem ; 93(38): 12840-12847, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34523340

RESUMEN

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to monitor protein intrinsic dynamics. The technique provides high-resolution information on how protein intrinsic dynamics are altered in response to biological signals, such as ligand binding, oligomerization, or allosteric networks. However, identification, interpretation, and visualization of such events from HDX-MS data sets is challenging as these data sets consist of many individual data points collected across peptides, time points, and experimental conditions. Here, we present PyHDX, an open-source Python package and webserver, that allows the user to batch extract the universal quantity Gibbs free energy at residue levels over multiple protein conditions and homologues. The output is directly visualized on a linear map or 3D structures or is exported as .csv files or PyMOL scripts.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Deuterio , Péptidos , Proteínas
9.
Expert Rev Proteomics ; 18(7): 623-635, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34348542

RESUMEN

BACKGROUND: Knee osteoarthritis (OA) is one of the most common structural OA disorders globally. Incomplete understanding of the fundamental biological aspects of osteoarthritis underlies the current lack of effective treatment or disease modifying drugs. RESEARCH DESIGN AND METHODS: We implemented a systems approach by making use of the statistical network concepts in Weighted Gene Co-expression Analysis to reconstruct the organization of the core proteome network in chondrocytes obtained from OA patients and healthy individuals. Protein modules reflect groups of tightly co-ordinated changes in protein abundance across healthy and OA chondrocytes. RESULTS: The unbiased systems analysis identified extracellular matrix (ECM) mechanosensing and glycolysis as two modules that are most highly correlated with ΟΑ. The ECM module was enriched in the OA genetic risk factors tenascin-C (TNC) and collagen 11A1 (COL11A1), as well as in cartilage oligomeric matrix protein (COMP), a biomarker associated with cartilage integrity. Mapping proteins that are unique to OA or healthy chondrocytes onto the core interactome, which connects microenvironment sensing and regulation of glycolysis, identified differences in metabolic and anti-inflammatory adaptation. CONCLUSION: The interconnection between cartilage ECM remodeling and metabolism is indicative of the dynamic chondrocyte states and their significance in osteoarthritis.


Asunto(s)
Condrocitos , Osteoartritis , Células Cultivadas , Matriz Extracelular , Humanos
10.
Mol Cell ; 52(5): 655-66, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24332176

RESUMEN

Most secretory preproteins exit bacterial cells through the protein translocase, comprising the SecYEG channel and the dimeric peripheral ATPase motor SecA. Energetic coupling to work remains elusive. We now demonstrate that translocation is driven by unusually dynamic quaternary changes in SecA. The dimer occupies several successive states with distinct protomer arrangements. SecA docks on SecYEG as a dimer and becomes functionally asymmetric. Docking occurs via only one protomer. The second protomer allosterically regulates downstream steps. Binding of one preprotein signal peptide to the SecYEG-docked SecA protomer elongates the SecA dimer and triggers the translocase holoenzyme to obtain a lower activation energy conformation. ATP hydrolysis monomerizes the triggered SecA dimer, causing mature chain trapping and processive translocation. This is a unique example of one protein exploiting quaternary dynamics to become a substrate receptor, a "loading clamp," and a "processive motor." This mechanism has widespread implications on protein translocases, chaperones, and motors.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfato/metabolismo , Catálisis , Dimerización , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Mutación , Unión Proteica , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
11.
Mol Cell Proteomics ; 18(3): 423-436, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30498012

RESUMEN

Protein secretion is a central biological process in all organisms. Most studies dissecting bacterial secretion mechanisms have focused on Gram-negative cell envelopes such as that of Escherichia coli However, proteomics analyses in Gram negatives is hampered by their outer membrane. Here we studied protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, in which most of the secretome is released in the growth medium. We monitored changes of the secretome as a function of growth phase and medium. We determined distinct protein classes of "house-keeping" secreted proteins that do not change their appearance or abundance in the various media and growth phases. These comprise mainly enzymes involved in cell wall maintenance and basic transport. In addition, we detected significant abundance and content changes to a sub-set of the proteome, as a function of growth in the different media. These did not depend on the media being minimal or rich. Transcriptional regulation but not changes in export machinery components can explain some of these changes. However, additional downstream mechanisms must be important for selective secretome funneling. These observations lay the foundations of using S. lividans as a model organism to study how metabolism is linked to optimal secretion and help develop rational optimization of heterologous protein production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Medios de Cultivo/análisis , Proteómica/métodos , Streptomyces lividans/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Esenciales , Modelos Biológicos , Streptomyces lividans/metabolismo
12.
Alzheimers Dement ; 17(6): 946-958, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33871169

RESUMEN

Proteome profile changes in Alzheimer's disease (AD) brains have been reported. However, it is unclear whether they represent a continuous process, or whether there is a sequential involvement of distinct proteins. To address this question, we used mass spectrometry. We analyzed soluble, dispersible, sodium dodecyl sulfate, and formic acid fractions of neocortex homogenates (mainly Brodmann area 17-19) from 18 pathologically diagnosed preclinical AD, 17 symptomatic AD, and 18 cases without signs of neurodegeneration. By doing so, we identified four groups of AD-related proteins being changed in levels in preclinical and symptomatic AD cases: early-responding, late-responding, gradually-changing, and fraction-shifting proteins. Gene ontology analysis of these proteins and all known AD-risk/causative genes identified vesicle endocytosis and the secretory pathway-related processes as an early-involved AD component. In conclusion, our findings suggest that subtle changes involving the secretory pathway and endocytosis precede severe proteome changes in symptomatic AD as part of the preclinical phase of AD. The respective early-responding proteins may also contribute to synaptic vesicle cycle alterations in symptomatic AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/patología , Neocórtex/patología , Síntomas Prodrómicos , Proteoma/genética , Péptidos beta-Amiloides , Humanos , Espectrometría de Masas , Proteómica
13.
Trends Biochem Sci ; 41(2): 175-189, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26520801

RESUMEN

The Type III secretion system (T3SS) is a protein export pathway that is widespread in Gram-negative bacteria and delivers effector proteins directly into eukaryotic cells. At its core lie the injectisome (a sophisticated transmembrane secretion apparatus) and a complex network of specialized chaperones that target secretory proteins to the antechamber of the injectisome. The assembly of the system, and the subsequent secretion of proteins through it, undergo fine-tuned, hierarchical regulation. Here, we present the current understanding of the injectisome assembly process, secretion hierarchy, and the role of chaperones. We discuss these events in light of available structural and biochemical dissection and propose future directions essential to revealing mechanistic insight into this fascinating nanomachine.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Nanotecnología , Proteínas Bacterianas/metabolismo
14.
Subcell Biochem ; 92: 337-366, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214992

RESUMEN

The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.


Asunto(s)
Membrana Celular/enzimología , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/metabolismo , Canales de Translocación SEC/metabolismo , Sistema de Translocación de Arginina Gemela/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Transporte de Proteínas
15.
Mass Spectrom Rev ; 37(6): 738-749, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29529716

RESUMEN

Chemical cross-linking analyzed by mass spectrometry (XL-MS) has become an important tool in unravelling protein structure, dynamics, and complex formation. Because the analysis of cross-linked proteins with mass spectrometry results in specific computational challenges, many computational tools have been developed to identify cross-linked peptides from mass spectra and subsequently interpret the identified cross-links within their structural context. In this review, we will provide an overview of the different tools that are currently available to tackle the computational part of an XL-MS experiment. First, we give an introduction on the computational challenges encountered when processing data from a cross-linking experiment. We then discuss available tools to identify peptides that are linked by intact or MS-cleavable cross-linkers, and we provide an overview of tools to interpret cross-linked peptides in the context of protein structure. Finally, we give an outlook on data management and dissemination challenges and opportunities for cross-linking experiments.


Asunto(s)
Algoritmos , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Péptidos/análisis , Proteómica/métodos , Animales , Humanos , Modelos Moleculares , Proteínas/análisis
16.
Mol Cell ; 44(5): 734-44, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152477

RESUMEN

Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Modelos Moleculares , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Imitación Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica
18.
Proc Natl Acad Sci U S A ; 113(35): 9798-803, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528687

RESUMEN

The flagellum is a complex bacterial nanomachine that requires the proper assembly of several different proteins for its function. Dedicated chaperones are central in preventing aggregation or undesired interactions of flagellar proteins, including their targeting to the export gate. FliT is a key flagellar chaperone that binds to several flagellar proteins in the cytoplasm, including its cognate filament-capping protein FliD. We have determined the solution structure of the FliT chaperone in the free state and in complex with FliD and the flagellar ATPase FliI. FliT adopts a four-helix bundle and uses a hydrophobic surface formed by the first three helices to recognize its substrate proteins. We show that the fourth helix constitutes the binding site for FlhA, a membrane protein at the export gate. In the absence of a substrate protein FliT adopts an autoinhibited structure wherein both the binding sites for substrates and FlhA are occluded. Substrate binding to FliT activates the complex for FlhA binding and thus targeting of the chaperone-substrate complex to the export gate. The activation and targeting mechanisms reported for FliT appear to be shared among the other flagellar chaperones.


Asunto(s)
Proteínas Bacterianas/química , Flagelos/química , Proteínas de la Membrana/química , Chaperonas Moleculares/química , ATPasas de Translocación de Protón/química , Salmonella typhimurium/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/ultraestructura , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/ultraestructura , Especificidad por Sustrato
19.
Curr Top Microbiol Immunol ; 404: 267-308, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27885530

RESUMEN

A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotecnología , Bacterias Grampositivas/metabolismo , Proteínas Bacterianas/biosíntesis , Fermentación , Sistemas de Secreción Tipo IV/fisiología , Sistemas de Secreción Tipo VII/fisiología
20.
Microb Cell Fact ; 17(1): 198, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577858

RESUMEN

BACKGROUND: The Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteins-which favors correct folding and facilitates downstream processing-as well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and [Formula: see text]-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)-previously shown to be successfully overexpressed in S. lividans-was taken as an example protein. RESULTS: RNA-seq and [Formula: see text]-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion. CONCLUSIONS: Transcriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S. lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S. lividans metabolome under heterologous protein production.


Asunto(s)
Familia de Multigenes/genética , Biosíntesis de Proteínas/genética , Streptomyces lividans/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA