Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544869

RESUMEN

Mutations in the gene for Norrie disease protein (Ndp) cause syndromic deafness and blindness. We show here that cochlear function in an Ndp knockout mouse deteriorated with age: At P3-P4, hair cells (HCs) showed progressive loss of Pou4f3 and Gfi1, key transcription factors for HC maturation, and Myo7a, a specialized myosin required for normal function of HC stereocilia. Loss of expression of these genes correlated to increasing HC loss and profound hearing loss by 2 mo. We show that overexpression of the Ndp gene in neonatal supporting cells or, remarkably, up-regulation of canonical Wnt signaling in HCs rescued HCs and cochlear function. We conclude that Ndp secreted from supporting cells orchestrates a transcriptional network for the maintenance and survival of HCs and that increasing the level of ß-catenin, the intracellular effector of Wnt signaling, is sufficient to replace the functional requirement for Ndp in the cochlea.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/fisiología , Células Ciliadas Auditivas/patología , Pérdida Auditiva/patología , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/fisiología , Factor de Transcripción Brn-3C/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Unión al ADN/genética , Femenino , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/etiología , Pérdida Auditiva/metabolismo , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Brn-3C/genética , Factores de Transcripción/genética , Vía de Señalización Wnt
2.
Development ; 146(17)2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477580

RESUMEN

The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.


Asunto(s)
Diferenciación Celular/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Organoides/citología , Adulto , Animales , Animales Recién Nacidos , Evaluación Preclínica de Medicamentos/métodos , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Humanos , Recién Nacido , Mamíferos/embriología , Mamíferos/crecimiento & desarrollo , Ratones , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/metabolismo , Regeneración
3.
Development ; 145(23)2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30389848

RESUMEN

Lack of sensory hair cell (HC) regeneration in mammalian adults is a major contributor to hearing loss. In contrast, the neonatal mouse cochlea retains a transient capacity for regeneration, and forced Wnt activation in neonatal stages promotes supporting cell (SC) proliferation and induction of ectopic HCs. We currently know little about the temporal pattern and underlying mechanism of this age-dependent regenerative response. Using an in vitro model, we show that Wnt activation promotes SC proliferation following birth, but prior to postnatal day (P) 5. This age-dependent decline in proliferation occurs despite evidence that the Wnt pathway is postnatally active and can be further enhanced by Wnt stimulators. Using an in vivo mouse model and RNA sequencing, we show that proliferation in the early neonatal cochlea is correlated with a unique transcriptional response that diminishes with age. Furthermore, we find that augmenting Wnt signaling through the neonatal stages extends the window for HC induction in response to Notch signaling inhibition. Our results suggest that the downstream transcriptional response to Wnt activation, in part, underlies the regenerative capacity of the mammalian cochlea.


Asunto(s)
Cóclea/fisiología , Mamíferos/fisiología , Regeneración/genética , Transcripción Genética , Vía de Señalización Wnt/genética , Animales , Animales Recién Nacidos , Proliferación Celular , Transdiferenciación Celular , Embrión de Mamíferos/citología , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/metabolismo , Masculino , Ratones , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción TCF/metabolismo , beta Catenina/metabolismo
4.
Stem Cells ; 38(7): 890-903, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246510

RESUMEN

Sensorineural hearing loss is irreversible and can be caused by loss of auditory neurons. Regeneration of neural cells from endogenous cells may offer a future tool to restore the auditory circuit and to enhance the performance of implantable hearing devices. Neurons and glial cells in the peripheral nervous system are closely related and originate from a common progenitor. Prior work in our lab indicated that in the early postnatal mouse inner ear, proteolipid protein 1 (Plp1) expressing glial cells could act as progenitor cells for neurons in vitro. Here, we used a transgenic mouse model to transiently overexpress Lin28, a neural stem cell regulator, in Plp1-positive glial cells. Lin28 promoted proliferation and conversion of auditory glial cells into neurons in vitro. To study the effects of Lin28 on endogenous glial cells after loss of auditory neurons in vivo, we produced a model of auditory neuropathy by selectively damaging auditory neurons with ouabain. After neural damage was confirmed by the auditory brainstem response, we briefly upregulated the Lin28 in Plp1-expressing inner ear glial cells. One month later, we analyzed the cochlea for neural marker expression by quantitative RT-PCR and immunohistochemistry. We found that transient Lin28 overexpression in Plp1-expressing glial cells induced expression of neural stem cell markers and subsequent conversion into neurons. This suggests the potential for inner ear glia to be converted into neurons as a regeneration therapy for neural replacement in auditory neuropathy.


Asunto(s)
Oído Interno , Pérdida Auditiva Central , Células-Madre Neurales , Animales , Oído Interno/fisiología , Pérdida Auditiva Central/metabolismo , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo
5.
J Neurophysiol ; 122(5): 1962-1974, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31533018

RESUMEN

Optogenetics comprise a promising alternative to electrical stimulation for characterization of neural circuits and for the next generation of neural prostheses. Optogenetic stimulation relies on expression of photosensitive microbial proteins in animal cells to initiate a flow of ions into the cells in response to visible light. Here, we generated a novel transgenic mouse model in which we studied the optogenetic activation of spiral ganglion neurons, the primary afferent neurons of the auditory system, and showed a strong optogenetic response, with a similar amplitude as the acoustically evoked response. A twofold increase in the level of channelrhodopsin expression significantly increased the photosensitivity at both the single cell and organismal levels but also partially compromised the native electrophysiological properties of the neurons. The importance of channelrhodopsin expression level to optogenetic stimulation, revealed by these quantitative measurements, will be significant for the characterization of neural circuitry and for the use of optogenetics in neural prostheses.NEW & NOTEWORTHY This study reveals a dose-response relationship between channelrhodopsin expression and optogenetic excitation. Both single cell and organismal responses depend on the expression level of the heterologous protein. Expression level of the opsin is thus an important variable in determining the outcome of an optogenetic experiment. These results are key to the implementation of neural prostheses based on optogenetics, such as next generation cochlear implants, which would use light to elicit a neural response to sound.


Asunto(s)
Channelrhodopsins/fisiología , Cóclea/fisiología , Fenómenos Electrofisiológicos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Neuronas Aferentes/fisiología , Optogenética , Ganglio Espiral de la Cóclea/fisiología , Animales , Ratones , Ratones Transgénicos , Modelos Animales
6.
Development ; 143(23): 4381-4393, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789624

RESUMEN

Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin.


Asunto(s)
Diferenciación Celular/fisiología , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Vestibulares/citología , Células-Madre Neurales/citología , Ganglio Espiral de la Cóclea/citología , Vestíbulo del Laberinto/citología , Animales , Células Cultivadas , Ratones , Canales de Potasio con Entrada de Voltaje/fisiología
7.
Eur J Neurosci ; 48(10): 3299-3316, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30270571

RESUMEN

In mammals, cochlear hair cells are not regenerated once they are lost, leading to permanent hearing deficits. In other vertebrates, the adjacent supporting cells act as a stem cell compartment, in that they both proliferate and differentiate into de novo auditory hair cells. Although there is evidence that mammalian cochlear supporting cells can differentiate into new hair cells, the signals that regulate this process are poorly characterized. We hypothesize that signaling from the epidermal growth factor receptor (EGFR) family may play a role in cochlear regeneration. We focus on one such member, ERBB2, and report the effects of expressing a constitutively active ERBB2 receptor in neonatal mouse cochlear supporting cells, using viruses and transgenic expression. Lineage tracing with fluorescent reporter proteins was used to determine the relationships between cells with active ERBB2 signaling and cells that divided or differentiated into hair cells. In vitro, individual supporting cells harbouring a constitutively active ERBB2 receptor appeared to signal to their neighbouring supporting cells, inducing them to down-regulate a supporting cell marker and to proliferate. In vivo, we found supernumerary hair cell-like cells near supporting cells that expressed ERBB2 receptors. Both supporting cell proliferation and hair cell differentiation were largely reproduced in vitro using small molecules that we show also activate ERBB2. Our data suggest that signaling from the receptor tyrosine kinase ERBB2 can drive the activation of secondary signaling pathways to regulate regeneration, suggesting a new model where an interplay of cell signaling regulates regeneration by endogenous stem-like cells.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Ciliadas Auditivas/fisiología , Receptor ErbB-2/fisiología , Regeneración/fisiología , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Ratones , Ratones Transgénicos
8.
J Neurosci ; 36(36): 9479-89, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27605621

RESUMEN

UNLABELLED: Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear ß-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of ß-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT: Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss.


Asunto(s)
Muerte Celular/efectos de los fármacos , Toxina Diftérica/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Venenos/toxicidad , Regeneración/efectos de los fármacos , Proteínas Wnt/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzotiazoles/farmacología , Muerte Celular/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Ratones , Ratones Transgénicos , Neomicina/farmacología , Regeneración/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
J Biol Chem ; 291(40): 21096-21109, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27542412

RESUMEN

Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinasa de la Caseína I/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Poliubiquitina/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Quinasa de la Caseína I/genética , Supervivencia Celular/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células HEK293 , Células Ciliadas Auditivas Internas/citología , Células HeLa , Humanos , Poliubiquitina/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
10.
Am J Otolaryngol ; 38(5): 518-520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28687426

RESUMEN

PURPOSE: A transcanal endoscopic infracochlear surgical approach to the internal auditory canal (IAC) in a human temporal bone model has previously been described. However, the proportion of patients with favorable anatomy for this novel surgical technique remains unknown. Herein, we perform a quantitative analysis of the transcanal endoscopic infracochlear corridor to the IAC based on computed tomography. MATERIALS AND METHODS: High resolution computed tomography scans of adult temporal bones were measured to determine the accessibility of the IAC when using an endoscopic transcanal, cochlear-sparing surgical corridor. RESULTS: This approach to the IAC was feasible in 92% (35 of 38) specimens based on a minimum distance of 3mm between the basilar turn of the cochlear and the great vessels (jugular bulb and carotid artery). CONCLUSIONS: Infracochlear access to the IAC is feasible in the majority of adult temporal bones and has implications for future hearing preservation drug delivery approaches to the IAC.


Asunto(s)
Oído Interno/diagnóstico por imagen , Oído Interno/cirugía , Endoscopía , Neuroma Acústico/cirugía , Hueso Temporal/diagnóstico por imagen , Adulto , Humanos , Neuroma Acústico/diagnóstico por imagen , Selección de Paciente , Tomografía Computarizada por Rayos X
11.
Proc Natl Acad Sci U S A ; 110(34): 13851-6, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918377

RESUMEN

Mammalian hair cells do not regenerate, and their loss is a major cause of deafness. We recently identified leucine-rich repeat containing, G-protein-coupled receptor 5 (Lgr5)-expressing cochlear supporting cells with the capacity for self-renewal and hair cell differentiation in vitro. We found that these cells, a subset of cochlear supporting cells, were responsive to Wnt signaling. Here we asked whether these Lgr5-positive cells, despite their lack of contribution to hair cell replacement after degenerative loss, could be driven by forced expression of ß-catenin to act as hair cell progenitors in vivo. We showed that forced stabilization of ß-catenin in supporting cells in neonatal animals resulted in proliferation of supporting cells and generation of hair cells. Although ß-catenin expression was increased by genetic means in all supporting cells, entry to the cell cycle and differentiation to hair cells of the normally postmitotic cells was restricted to the Lgr5-positive population. Our finding suggests that Wnt/ß-catenin can drive Lgr5-positive cells to act as hair cell progenitors, even after their exit from the cell cycle and apparent establishment of cell fate.


Asunto(s)
Cóclea/citología , Células Ciliadas Auditivas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/fisiología , Células Madre/fisiología , Vía de Señalización Wnt/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Cóclea/metabolismo , Técnicas Histológicas , Ratones , Ratones Transgénicos , Células Madre/metabolismo , beta Catenina/metabolismo
12.
J Neurosci ; 34(19): 6470-9, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806673

RESUMEN

The development of hair cells in the auditory system can be separated into steps; first, the establishment of progenitors for the sensory epithelium, and second, the differentiation of hair cells. Although the differentiation of hair cells is known to require the expression of basic helix-loop-helix transcription factor, Atoh1, the control of cell proliferation in the region of the developing cochlea that will ultimately become the sensory epithelium and the cues that initiate Atoh1 expression remain obscure. We assessed the role of Wnt/ß-catenin in both steps in gain- and loss-of-function models in mice. The canonical Wnt pathway mediator, ß-catenin, controls the expression of Atoh1. Knock-out of ß-catenin inhibited hair-cell, as well as pillar-cell, differentiation from sensory progenitors but was not required to maintain a hair-cell fate once specified. Constitutive activation of ß-catenin expanded sensory progenitors by inducing additional cell division and resulted in the differentiation of extra hair cells. Our data demonstrate that ß-catenin plays a role in cell division and differentiation in the cochlear sensory epithelium.


Asunto(s)
Diferenciación Celular/fisiología , Cóclea/fisiología , Células Ciliadas Auditivas Internas/fisiología , beta Catenina/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Cadherinas/genética , Cadherinas/fisiología , Ciclo Celular/fisiología , Cóclea/citología , Epitelio/inervación , Epitelio/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Inmunohistoquímica , Ratones , Ratones Noqueados , Órgano Espiral/crecimiento & desarrollo , Órgano Espiral/fisiología , Células Madre/fisiología , Proteínas Wnt/fisiología
13.
Nat Commun ; 15(1): 1896, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429256

RESUMEN

Inhibition of Notch signalling with a gamma-secretase inhibitor (GSI) induces mammalian hair cell regeneration and partial hearing restoration. In this proof-of-concept Phase I/IIa multiple-ascending dose open-label trial (ISRCTN59733689), adults with mild-moderate sensorineural hearing loss received 3 intratympanic injections of GSI LY3056480, in 1 ear over 2 weeks. Phase I primary outcome was safety and tolerability. Phase lla primary outcome was change from baseline to 12 weeks in average pure-tone air conduction threshold across 2,4,8 kHz. Secondary outcomes included this outcome at 6 weeks and change from baseline to 6 and 12 weeks in pure-tone thresholds at individual frequencies, speech reception thresholds (SRTs), Distortion Product Otoacoustic Emissions (DPOAE) amplitudes, Signal to Noise Ratios (SNRs) and distribution of categories normal, present-abnormal, absent and Hearing Handicap Inventory for Adults/Elderly (HHIA/E). In Phase I (N = 15, 1 site) there were no severe nor serious adverse events. In Phase IIa (N = 44, 3 sites) the average pure-tone threshold across 2,4,8 kHz did not change from baseline to 6 and 12 weeks (estimated change -0.87 dB; 95% CI -2.37 to 0.63; P = 0.252 and -0.46 dB; 95% CI -1.94 to 1.03; P = 0.545, respectively), nor did the means of secondary measures. DPOAE amplitudes, SNRs and distribution of categories did not change from baseline to 6 and 12 weeks, nor did SRTs and HHIA/E scores. Intratympanic delivery of LY3056480 is safe and well-tolerated; the trial's primary endpoint was not met.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Pérdida Auditiva Sensorineural , Adulto , Anciano , Humanos , Audiometría de Tonos Puros , Umbral Auditivo/fisiología , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Emisiones Otoacústicas Espontáneas/fisiología
14.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653806

RESUMEN

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Asunto(s)
Cóclea , Animales , Ratones , Cobayas , Humanos , Ratas , Porcinos , Células Ciliadas Auditivas , Microscopía Fluorescente , Aprendizaje Automático
15.
J Neurosci ; 32(28): 9639-48, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22787049

RESUMEN

Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single-cell suspension, compared with unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cells in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea.


Asunto(s)
Cólera/clasificación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Ciliadas Auditivas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/fisiología , Proteína Wnt3A/farmacología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Cólera/tratamiento farmacológico , Cólera/metabolismo , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Miosina VIIa , Miosinas/metabolismo , Proteínas/genética , ARN Mensajero/metabolismo , ARN no Traducido , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción SOXB1/genética , Termolisina/farmacología , Trombospondinas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
16.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38076928

RESUMEN

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.

17.
Cell Rep ; 42(11): 113421, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37952154

RESUMEN

We explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells. We validate these networks, demonstrating dynamic changes both in expression and predicted binding sites of transcription factors (TFs) during organoid differentiation. We identify known regulators of hair cell development, Atoh1, Pou4f3, and Gfi1, and the analysis predicts the regulatory factors Tcf4, an E-protein and heterodimerization partner of Atoh1, and Ddit3, a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt-signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for hair cell (HC) regeneration, which is limited in the adult.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cóclea , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Organoides/metabolismo , Mamíferos/metabolismo
18.
J Neurosci ; 31(23): 8351-8, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653840

RESUMEN

Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells, and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus, Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors.


Asunto(s)
Diferenciación Celular/fisiología , Oído Interno/citología , Células Ciliadas Auditivas/citología , Neuronas/citología , Receptores Notch/metabolismo , Células Madre/citología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Western Blotting , Células Cultivadas , Oído Interno/metabolismo , Femenino , Citometría de Flujo , Células Ciliadas Auditivas/metabolismo , Inmunohistoquímica , Masculino , Ratones , Neoplasias Basocelulares , Neuronas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo
19.
J Biol Chem ; 285(1): 392-400, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19864427

RESUMEN

Atoh1, a basic helix-loop-helix transcription factor, plays a critical role in the differentiation of several epithelial and neural cell types. We found that beta-catenin, the key mediator of the canonical Wnt pathway, increased expression of Atoh1 in mouse neuroblastoma cells and neural progenitor cells, and baseline Atoh1 expression was decreased by siRNA directed at beta-catenin. The up-regulation of Atoh1 was caused by an interaction of beta-catenin with the Atoh1 enhancer that could be demonstrated by chromatin immunoprecipitation. We found that two putative Tcf-Lef sites in the 3' enhancer of the Atoh1 gene displayed an affinity for beta-catenin and were critical for the activation of Atoh1 transcription because mutation of either site decreased expression of a reporter gene downstream of the enhancer. Tcf-Lef co-activators were found in the complex that bound to these sites in the DNA together with beta-catenin. Inhibition of Notch signaling, which has previously been shown to induce bHLH transcription factor expression, increased beta-catenin expression in progenitor cells of the nervous system. Because this could be a mechanism for up-regulation of Atoh1 after inhibition of Notch, we tested whether siRNA to beta-catenin prevented the increase in Atoh1 and found that beta-catenin expression was required for increased expression of Atoh1 after Notch inhibition.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos/genética , Neuronas/citología , Células Madre/metabolismo , Regulación hacia Arriba/genética , beta Catenina/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Línea Celular , Silenciador del Gen , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/antagonistas & inhibidores , Células Madre/citología
20.
Stem Cell Reports ; 16(4): 797-809, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33770497

RESUMEN

Across species, expression of the basic helix-loop-helix transcription factor ATOH1 promotes differentiation of cochlear supporting cells to sensory hair cells required for hearing. In mammals, this process is limited to development, whereas nonmammalian vertebrates can also regenerate hair cells after injury. The mechanistic basis for this difference is not fully understood. Hypermethylated in cancer 1 (HIC1) is a transcriptional repressor known to inhibit Atoh1 in the cerebellum. We therefore investigated its potential role in cochlear hair cell differentiation. We find that Hic1 is expressed throughout the postnatal murine cochlear sensory epithelium. In cochlear organoids, Hic1 knockdown induces Atoh1 expression and promotes hair cell differentiation, while Hic1 overexpression hinders differentiation. Wild-type HIC1, but not the DNA-binding mutant C521S, suppresses activity of the Atoh1 autoregulatory enhancer and blocks its responsiveness to ß-catenin activation. Our findings reveal the importance of HIC1 repression of Atoh1 in the cochlea, which may be targeted to promote hair cell regeneration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Transcripción Genética , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Epitelio/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Audición/fisiología , Humanos , Ratones Endogámicos C57BL , Organoides/metabolismo , Unión Proteica , Factores de Transcripción TCF/metabolismo , Factores de Tiempo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA