Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2314781120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903258

RESUMEN

Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Priones/genética , Priones/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mutación , Amiloide/genética , Amiloide/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Proteínas Fúngicas/metabolismo , Mamíferos/metabolismo , Factores de Empalme de ARN/genética , Proteínas Nucleares/metabolismo , Enzimas Reparadoras del ADN/genética
2.
Curr Genet ; 67(6): 833-847, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34319422

RESUMEN

The yeast prions (infectious proteins) [URE3] and [PSI+] are essentially non-functional (or even toxic) amyloid forms of Ure2p and Sup35p, whose normal function is in nitrogen catabolite repression and translation termination, respectively. Yeast has an array of systems working in normal cells that largely block infection with prions, block most prion formation, cure most nascent prions and mitigate the toxic effects of those prions that escape the first three types of systems. Here we review recent progress in defining these anti-prion systems, how they work and how they are regulated. Polymorphisms of the prion domains partially block infection with prions. Ribosome-associated chaperones ensure proper folding of nascent proteins, thus reducing [PSI+] prion formation and curing many [PSI+] variants that do form. Btn2p is a sequestering protein which gathers [URE3] amyloid filaments to one place in the cells so that the prion is often lost by progeny cells. Proteasome impairment produces massive overexpression of Btn2p and paralog Cur1p, resulting in [URE3] curing. Inversely, increased proteasome activity, by derepression of proteasome component gene transcription or by 60S ribosomal subunit gene mutation, prevents prion curing by Btn2p or Cur1p. The nonsense-mediated decay proteins (Upf1,2,3) cure many nascent [PSI+] variants by associating with Sup35p directly. Normal levels of the disaggregating chaperone Hsp104 can also cure many [PSI+] prion variants. By keeping the cellular levels of certain inositol polyphosphates / pyrophosphates low, Siw14p cures certain [PSI+] variants. It is hoped that exploration of the yeast innate immunity to prions will lead to discovery of similar systems in humans.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Enfermedades por Prión/etiología , Priones/inmunología , Amiloide/química , Amiloide/inmunología , Amiloide/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/inmunología , Proteínas Amiloidogénicas/metabolismo , Animales , Autofagia , Susceptibilidad a Enfermedades/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Enfermedades por Prión/metabolismo , Priones/química , Priones/genética , Priones/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Ribosomas/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(40): E8402-E8410, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923943

RESUMEN

The yeast prions [PSI+] and [URE3] are folded in-register parallel ß-sheet amyloids of Sup35p and Ure2p, respectively. In a screen for antiprion systems curing [PSI+] without protein overproduction, we detected Siw14p as an antiprion element. An array of genetic tests confirmed that many variants of [PSI+] arising in the absence of Siw14p are cured by restoring normal levels of the protein. Siw14p is a pyrophosphatase specifically cleaving the ß phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5), suggesting that increased levels of this or some other inositol polyphosphate favors [PSI+] propagation. In support of this notion, we found that nearly all variants of [PSI+] isolated in a WT strain were lost upon loss of ARG82, which encodes inositol polyphosphate multikinase. Inactivation of the Arg82p kinase by D131A and K133A mutations (preserving Arg82p's nonkinase transcription regulation functions) resulted the loss of its ability to support [PSI+] propagation. The loss of [PSI+] in arg82Δ is independent of Hsp104's antiprion activity. [PSI+] variants requiring Arg82p could propagate in ipk1Δ (IP5 kinase), kcs1Δ (IP6 5-kinase), vip1Δ (IP6 1-kinase), ddp1Δ (inositol pyrophosphatase), or kcs1Δ vip1Δ mutants but not in ipk1Δ kcs1Δ or ddp1Δ kcs1Δ double mutants. Thus, nearly all [PSI+] prion variants require inositol poly-/pyrophosphates for their propagation, and at least IP6 or 5PP-IP4 can support [PSI+] propagation.


Asunto(s)
Inositol/metabolismo , Polifosfatos/metabolismo , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Priones/genética , Biosíntesis de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
5.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635197

RESUMEN

Infectious proteins (prions) include an array of human (mammalian) and yeast amyloid diseases in which a protein or peptide forms a linear ß-sheet-rich filament, at least one functional amyloid prion, and two functional infectious proteins unrelated to amyloid. In Saccharomyces cerevisiae, at least eight anti-prion systems deal with pathogenic amyloid yeast prions by (1) blocking their generation (Ssb1,2, Ssz1, Zuo1), (2) curing most variants as they arise (Btn2, Cur1, Hsp104, Upf1,2,3, Siw14), and (3) limiting the pathogenicity of variants that do arise and propagate (Sis1, Lug1). Known mechanisms include facilitating proper folding of the prion protein (Ssb1,2, Ssz1, Zuo1), producing highly asymmetric segregation of prion filaments in mitosis (Btn2, Hsp104), competing with the amyloid filaments for prion protein monomers (Upf1,2,3), and regulation of levels of inositol polyphosphates (Siw14). It is hoped that the discovery of yeast anti-prion systems and elucidation of their mechanisms will facilitate finding analogous or homologous systems in humans, whose manipulation may be useful in treatment.


Asunto(s)
Priones/genética , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Evolución Molecular , Genes Fúngicos , Variación Genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Priónicas/química , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/antagonistas & inhibidores , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química
6.
Biochemistry ; 57(8): 1285-1292, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29377675

RESUMEN

The amyloid-based yeast prions are folded in-register parallel ß-sheet polymers. Each prion can exist in a wide array of variants, with different biological properties resulting from different self-propagating amyloid conformations. Yeast has several anti-prion systems, acting in normal cells (without protein overexpression or deficiency). Some anti-prion proteins partially block prion formation (Ssb1,2p, ribosome-associated Hsp70s); others cure a large portion of prion variants that arise [Btn2p, Cur1p, Hsp104 (a disaggregase), Siw14p, and Upf1,2,3p, nonsense-mediated decay proteins], and others prevent prion-induced pathology (Sis1p, essential cytoplasmic Hsp40). Study of the anti-prion activity of Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5), led to the discovery that inositol polyphosphates, signal transduction molecules, are involved in [PSI+] prion propagation. Either inositol hexakisphosphate or 5PP-IP4 (or 5PP-IP5) can supply a function that is needed by nearly all [PSI+] variants. Because yeast prions are informative models for mammalian prion diseases and other amyloidoses, detailed examination of the anti-prion systems, some of which have close mammalian homologues, will be important for the development of therapeutic measures.


Asunto(s)
Inositol/metabolismo , Polifosfatos/metabolismo , Priones/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Curr Genet ; 64(3): 571-574, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29243174

RESUMEN

The [PSI+] prion is a folded in-register parallel ß-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.


Asunto(s)
Inositol/química , Polifosfatos/metabolismo , Priones/genética , Metabolismo Energético , Polifosfatos/química , Biosíntesis de Proteínas , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero , Transcripción Genética
8.
Eukaryot Cell ; 12(4): 551-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397567

RESUMEN

Ure2p, normally a regulator of nitrogen catabolism in Saccharomyces cerevisiae, can be a prion (infectious protein) by forming a folded in-register parallel amyloid called [URE3]. Using S. cerevisiae as a test bed, we previously showed that Ure2p of Candida albicans (CaUre2p) can also form a prion, but that Ure2p of C. glabrata (CgUre2p) cannot. Here, we constructed C. glabrata strains to test whether CgUre2p can form a prion in its native environment. We find that while CaUre2p can form a [URE3] in C. glabrata, CgUre2p cannot, although the latter has a prion domain sequence more similar to that of ScUre2p than that of CaUre2p. This supports the notion that prion formation is not a conserved property of Ure2p but is a pathology arising sporadically. We find that some [URE3albicans] variants are restricted in their transmissibility to certain recipient strains. In addition, we show that the C. glabrata HO can induce switching of the C. glabrata mating type locus.


Asunto(s)
Candida albicans/metabolismo , Candida glabrata/metabolismo , Proteínas Fúngicas/química , Glutatión Peroxidasa/química , Priones/química , Candida albicans/genética , Candida glabrata/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos , Prueba de Complementación Genética , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Priones/genética , Priones/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie
9.
Semin Cell Dev Biol ; 22(5): 469-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21345375

RESUMEN

Prion "variants" or "strains" are prions with the identical protein sequence, but different characteristics of the prion infection: e.g. different incubation periods for scrapie strains or different phenotype intensities for yeast prion variants. We have shown that infectious amyloids of the yeast prions [PSI+], [URE3] and [PIN+] each have an in-register parallel ß-sheet architecture. Moreover, we have pointed out that this amyloid architecture can explain how one protein can faithfully transmit any of several conformations to new protein monomers. This explains how proteins can be genes.


Asunto(s)
Amiloide/química , Proteínas Fúngicas/química , Modelos Estructurales , Enfermedades por Prión/metabolismo , Priones/química , Saccharomyces cerevisiae/química , Amiloide/genética , Animales , Proteínas Fúngicas/metabolismo , Priones/genética , Priones/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Biochemistry ; 52(9): 1514-27, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23379365

RESUMEN

The prions (infectious proteins) of Saccharomyces cerevisiae are proteins acting as genes, by templating their conformation from one molecule to another in analogy to DNA templating its sequence. Most yeast prions are amyloid forms of normally soluble proteins, and a single protein sequence can have any of several self-propagating forms (called prion strains or variants), analogous to the different possible alleles of a DNA gene. A central issue in prion biology is the structural basis of this conformational templating process. The in-register parallel ß sheet structure found for several infectious yeast prion amyloids naturally suggests an explanation for this conformational templating. While most prions are plainly diseases, the [Het-s] prion of Podospora anserina may be a functional amyloid, with important structural implications. Yeast prions are important models for human amyloid diseases in general, particularly because new evidence is showing infectious aspects of several human amyloidoses not previously classified as prions. We also review studies of the roles of chaperones, aggregate-collecting proteins, and other cellular components using yeast that have led the way in improving the understanding of similar processes that must be operating in many human amyloidoses.


Asunto(s)
Amiloide/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Priones/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Amiloide/genética , Amiloide/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Hongos/química , Hongos/genética , Hongos/ultraestructura , Genes Fúngicos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Priones/química , Priones/genética , Priones/ultraestructura , Conformación Proteica
13.
Biology (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36138748

RESUMEN

All variants of the yeast prions [PSI+] and [URE3] are detrimental to their hosts, as shown by the dramatic slowing of growth (or even lethality) of a majority, by the rare occurrence in wild isolates of even the mildest variants and by the absence of reproducible benefits of these prions. To deal with the prion problem, the host has evolved an array of anti-prion systems, acting in normal cells (without overproduction or deficiency of any component) to block prion transmission from other cells, to lower the rates of spontaneous prion generation, to cure most prions as they arise and to limit the damage caused by those variants that manage to elude these (necessarily) imperfect defenses. Here we review the properties of prion protein sequence polymorphisms Btn2, Cur1, Hsp104, Upf1,2,3, ribosome-associated chaperones, inositol polyphosphates, Sis1 and Lug1, which are responsible for these anti-prion effects. We recently showed that the combined action of ribosome-associated chaperones, nonsense-mediated decay factors and the Hsp104 disaggregase lower the frequency of [PSI+] appearance as much as 5000-fold. Moreover, while Btn2 and Cur1 are anti-prion factors against [URE3] and an unrelated artificial prion, they promote [PSI+] prion generation and propagation.

14.
Biochemistry ; 50(27): 5971-8, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21634787

RESUMEN

Ure2p of Candida albicans (Ure2(albicans) or CaUre2p) can be a prion in Saccharomyces cerevisiae, but Ure2p of Candida glabrata (Ure2(glabrata)) cannot, even though the Ure2(glabrata) N-terminal domain is more similar to that of the S. cerevisiae Ure2p (Ure2(cerevisiae)) than Ure2(albicans) is. We show that the N-terminal N/Q-rich prion domain of Ure2(albicans) forms amyloid that is infectious, transmitting [URE3alb] to S. cerevisiae cells expressing only C. albicans Ure2p. Using solid-state nuclear magnetic resonance of selectively labeled C. albicans Ure2p(1-90), we show that this infectious amyloid has an in-register parallel ß-sheet structure, like that of the S. cerevisiae Ure2p prion domain and other S. cerevisiae prion amyloids. In contrast, the N/Q-rich N-terminal domain of Ure2(glabrata) does not readily form amyloid, and that formed upon prolonged incubation is not infectious.


Asunto(s)
Amiloide/química , Candida albicans/química , Enfermedades por Prión/microbiología , Priones/biosíntesis , Priones/química , Priones/patogenicidad , Amiloide/fisiología , Candida albicans/patogenicidad , Candida glabrata/química , Regulación Bacteriana de la Expresión Génica , Glutatión Peroxidasa/química , Espectroscopía de Resonancia Magnética , Priones/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/patogenicidad , Proteínas de Saccharomyces cerevisiae/química
15.
Genetics ; 217(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857305

RESUMEN

[URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ, and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p, or Btn3p are unchanged in rpl4aΔ, rpl21bΔ, or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild-type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ, or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Chaperonas Moleculares/metabolismo , Priones/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Glutatión Peroxidasa/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Inmunidad Innata , Chaperonas Moleculares/genética , Priones/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
16.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33742650

RESUMEN

[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion-curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion-curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Chaperonas Moleculares/metabolismo , Priones/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amiloide/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Glutatión Peroxidasa/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Priones/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Genetics ; 181(3): 1159-67, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19124570

RESUMEN

As hamster scrapie cannot infect mice, due to sequence differences in their PrP proteins, we find "species barriers" to transmission of the [URE3] prion in Saccharomyces cerevisiae among Ure2 proteins of S. cerevisiae, paradoxus, bayanus, cariocanus, and mikatae on the basis of differences among their Ure2p prion domain sequences. The rapid variation of the N-terminal Ure2p prion domains results in protection against the detrimental effects of infection by a prion, just as the PrP residue 129 Met/Val polymorphism may have arisen to protect humans from the effects of cannibalism. Just as spread of bovine spongiform encephalopathy prion variant is less impaired by species barriers than is sheep scrapie, we find that some [URE3] prion variants are infectious to another yeast species while other variants (with the identical amino acid sequence) are not. The species barrier is thus prion variant dependent as in mammals. [URE3] prion variant characteristics are maintained even on passage through the Ure2p of another species. Ure2p of Saccharomyces castelli has an N-terminal Q/N-rich "prion domain" but does not form prions (in S. cerevisiae) and is not infected with [URE3] from Ure2p of other Saccharomyces. This implies that conservation of its prion domain is not for the purpose of forming prions. Indeed the Ure2p prion domain has been shown to be important, though not essential, for the nitrogen catabolism regulatory role of the protein.


Asunto(s)
Mutación , Priones/genética , Priones/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces/clasificación , Saccharomyces/metabolismo , Secuencia de Aminoácidos , Glutatión Peroxidasa , Datos de Secuencia Molecular , Priones/química , Proteínas de Saccharomyces cerevisiae/química , Especificidad de la Especie
18.
Bioessays ; 30(10): 955-64, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18798523

RESUMEN

Most prions (infectious proteins) are self-propagating amyloids (filamentous protein multimers), and have been found in both mammals and fungal species. The prions [URE3] and [PSI+] of yeast are disease agents of Saccharomyces cerevisiae while [Het-s] of Podospora anserina may serve a normal cellular function. The parallel in-register beta-sheet structure shown by prion amyloids makes possible a templating action at the end of filaments which explains the faithful transmission of variant differences in these molecules. This property of self-reproduction, in turn, allows these proteins to act as de facto genes, encoding heritable information.


Asunto(s)
Amiloide/química , Podospora/química , Priones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Amiloide/genética , Amiloide/ultraestructura , Glutatión Peroxidasa , Factores de Terminación de Péptidos , Podospora/genética , Priones/genética , Priones/ultraestructura , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
19.
Viruses ; 11(3)2019 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-30857327

RESUMEN

The known amyloid-based prions of Saccharomyces cerevisiae each have multiple heritable forms, called "prion variants" or "prion strains". These variants, all based on the same prion protein sequence, differ in their biological properties and their detailed amyloid structures, although each of the few examined to date have an in-register parallel folded ß sheet architecture. Here, we review the range of biological properties of yeast prion variants, factors affecting their generation and propagation, the interaction of prion variants with each other, the mutability of prions, and their segregation during mitotic growth. After early differentiation between strong and weak stable and unstable variants, the parameters distinguishing the variants has dramatically increased, only occasionally correlating with the strong/weak paradigm. A sensitivity to inter- and intraspecies barriers, anti-prion systems, and chaperone deficiencies or excesses and other factors all have dramatic selective effects on prion variants. Recent studies of anti-prion systems, which cure prions in wild strains, have revealed an enormous array of new variants, normally eliminated as they arise and so not previously studied. This work suggests that defects in the anti-prion systems, analogous to immune deficiencies, may be at the root of some human amyloidoses.


Asunto(s)
Variación Genética , Chaperonas Moleculares , Priones/genética , Priones/patogenicidad , Saccharomyces cerevisiae/genética , Amiloide/química , Amiloide/genética , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética
20.
Genetics ; 209(3): 789-800, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29769283

RESUMEN

[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most "variants" of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several antiprion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows the growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a "cullin"-containing E3 ligase. For efficient ubiquitylation, cullin-dependent E3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes RUB1, ULA1, UBA3, and UBC12 is also counterselected in our screen. We find that like ylr352wΔ [URE3] strains, ylr352wΔ ure2Δ strains do not grow on nonfermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1, encoding glutamine synthetase, allows growth of ylr352w∆ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352wΔ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352wΔ [URE3] and ylr352wΔ ure2Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting that Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ure2 grow).


Asunto(s)
Carbono/metabolismo , Proteínas de Drosophila/genética , Glutatión Peroxidasa/metabolismo , Nitrógeno/metabolismo , Priones/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Elementos Transponibles de ADN , Proteínas F-Box/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Glutatión Peroxidasa/genética , Mutación , Priones/genética , Receptor Cross-Talk , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA