Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Cell Sci ; 132(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189537

RESUMEN

The binding of DNA-dependent protein kinase catalytic subunit (DNA-PKcs, also known as PRKDC) to Ku proteins at DNA double-strand breaks (DSBs) has long been considered essential for non-homologous end joining (NHEJ) repair, providing a rationale for use of DNA-PKcs inhibitors as cancer therapeutics. Given lagging clinical translation, we reexamined mechanisms and observed instead that DSB repair can proceed independently of DNA-PKcs. While repair of radiation-induced DSBs was blocked in cells expressing shRNAs targeting Ku proteins or other NHEJ core factors, DSBs were repaired on schedule despite targeting DNA-PKcs. Although we failed to observe a DSB repair defect, the γH2AX foci that formed at sites of DNA damage persisted indefinitely after irradiation, leading to cytokinesis failure and accumulation of binucleated cells. Following this mitotic slippage, cells with decreased DNA-PKcs underwent accelerated cellular senescence. We identified downregulation of ataxia-telangiectasia mutated kinase (ATM) as the critical role of DNA-PKcs in recovery from DNA damage, insofar as targeting ATM restored γH2AX foci resolution and cytokinesis. Considering the lack of direct impact on DSB repair and emerging links between senescence and resistance to cancer therapy, these results suggest reassessing DNA-PKcs as a target for cancer treatment.


Asunto(s)
Senescencia Celular , Citoprotección , Reparación del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/metabolismo , Mitosis , Radiación Ionizante , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Aurora Quinasa B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citocinesis/efectos de los fármacos , Citocinesis/efectos de la radiación , Citoprotección/efectos de los fármacos , Citoprotección/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/efectos de la radiación , Histonas/metabolismo , Humanos , Células MCF-7 , Ratones , Mitosis/efectos de los fármacos , Mitosis/efectos de la radiación , Morfolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Pironas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Quinasa Tipo Polo 1
2.
J Cell Biochem ; 116(4): 661-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25418288

RESUMEN

The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Imagen Óptica/métodos , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Proteínas Fluorescentes Verdes , Humanos , Microscopía Confocal , Imagen de Lapso de Tiempo , Proteína 1 de Unión al Supresor Tumoral P53
3.
J Clin Med ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124556

RESUMEN

Objective: This study assessed the patterns and clinical significance of potential drug-drug interactions (pDDIs) in patients with diseases of the cardiovascular system. Methods: Electronic health records (EHRs), established in 2018-2023, were selected using the probability serial nested sampling method (n = 1030). Patients were aged 27 to 95 years (65.0% men). Primary diagnosis of COVID-19 was present in 17 EHRs (1.7%). Medscape Drug Interaction Checker was used to characterize pDDIs. The Mann-Whitney U test and chi-square test were used for statistical analysis. Results: Drug numbers per record ranged from 1 to 23 in T-List and from 1 to 20 in P-List. In T-List, 567 drug combinations resulted in 3781 pDDIs. In P-List, 584 drug combinations resulted in 5185 pDDIs. Polypharmacy was detected in 39.0% of records in T-List versus 65.9% in P-List (p-value < 0.05). The rates of serious and monitor-closely pDDIs due to 'aspirin + captopril' combinations were significantly higher in P-List than in T-List (p-value < 0.05). The rates of serious pDDIs due to 'aspirin + enalapril' and 'aspirin + lisinopril' combinations were significantly lower in P-List compared with the corresponding rates in T-List (p-value < 0.05). Serious pDDIs due to administration of aspirin with fosinopril, perindopril, and ramipril were detected less frequently in T-List (p-value < 0.05). Conclusions: Obtained data may suggest better patient adherence to 'aspirin + enalapril' and 'aspirin + lisinopril' combinations, which are potentially superior to the combinations of aspirin with fosinopril, perindopril, and ramipril. An abundance of high-order pDDIs in real-world clinical practice warrants the development of a decision support system aimed at reducing pharmacotherapy-associated risks while integrating patient pharmacokinetic, pharmacodynamic, and pharmacogenetic information.

4.
J Cell Biochem ; 114(11): 2493-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23744630

RESUMEN

We have previously demonstrated that the ultraviolet (UV) light is effective against a variety of cancer cells in vivo as well as in vitro. In the present report, we imaged the DNA damage repair response of minimal cancer after UVC irradiation. DNA-damage repair response to UV irradiation was imaged on tumors growing in 3D culture and in superficial tumors grown in vivo. UV-induced DNA damage repair was imaged with GFP fused to the DNA damage response (DDR)-related chromatin-binding protein 53BP1 in MiaPaCa-2 human pancreatic cancer cells. Three-dimensional Gelfoam® histocultures and confocal imaging enabled 53BP1-GFP nuclear foci to be observed within 1 h after UVC irradiation, indicating the onset of DNA damage repair response. A clonogenic assay showed that UVC inhibited MiaPaCa-2 cell proliferation in a dose-dependent manner, while UVA and UVB showed little effect on cell proliferation. Induction of UV-induced 53BP1-GFP focus formation was limited up to a depth of 40 µm in 3D-culture of MiaPaCa-2 cells. The MiaPaCa-2 cells irradiated by UVC light in a skin-flap mouse model had a significant decrease of tumor growth compared to untreated controls. Our results also demonstrate that 53BP1-GFP is an imageable marker of UV-induced DNA damage repair response of minimal cancer and that UVC is a useful tool for the treatment of residual cancer since UVC can kill superficial cancer cells without damage to deep tissue.


Asunto(s)
Daño del ADN/efectos de la radiación , Neoplasias/genética , Rayos Ultravioleta , Animales , Proliferación Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Ratones , Ratones Desnudos
5.
J Cell Biochem ; 114(11): 2454-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23696238

RESUMEN

Caffeine enhances the effect of certain anticancer drugs, but the mechanism of modulation is poorly understood. In this study, modulation of cisplatinum efficacy induced by caffeine was visualized at the subcellular level by real-time fluorescent-protein imaging. Mitotic and apoptotic changes were observed by imaging 143B human osteosarcoma dual-color cells, in which GFP is expressed in the nucleus and RFP is expressed in the cytoplasm. Modulation of the cell cycle was imaged using time-lapse imaging of HeLa cells expressing a fluorescent ubiquitination-based cell cycle indicator (FUCCI) in the nucleus. Clonogenic assays showed that caffeine increased the inhibition by cisplatinum on cell proliferation. Subcellular imaging demonstrated that cisplatinum decreased mitosis and induced apoptosis in 143B cells. The combination of cisplatinum and caffeine enhanced mitosis and subsequently increased apoptosis. Time-lapse imaging showed that cisplatinum strongly induced cell-cycle arrest in the S/G2 phase in HeLa-FUCCI cells. Caffeine overcame the cell-cycle arrest induced by cisplatinum, thereby increasing its efficacy, since cisplatinum is ineffective against quiescent cells. The data in this report indicate that caffeine modulates the cell cycle in cancer cells, thereby enhancing efficacy of cell-cycle-dependent anticancer drugs such as cisplatinum.


Asunto(s)
Apoptosis/efectos de los fármacos , Cafeína/farmacología , Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Mitosis/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Interacciones Farmacológicas , Humanos , Microscopía Confocal
6.
Mol Ther ; 20(5): 1046-55, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22334019

RESUMEN

Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.


Asunto(s)
Bencimidazoles/farmacología , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia/métodos , Melanoma Experimental/terapia , Neoplasias Pancreáticas/terapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Vacunas contra el Cáncer/inmunología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Terapia Combinada , Citocinas/biosíntesis , Citocinas/inmunología , Citotoxicidad Inmunológica , Femenino , Humanos , Activación de Linfocitos , Melanoma Experimental/inmunología , Melanoma Experimental/mortalidad , Ratones , Trasplante de Neoplasias , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Tasa de Supervivencia , Linfocitos T Citotóxicos/inmunología , Células Tumorales Cultivadas
7.
J Clin Med ; 12(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37568464

RESUMEN

The study aimed to assess clinical pharmacology patterns of prescribed and taken medications in older cardiovascular patients using electronic health records (EHRs) (n = 704) (2019-2022). Medscape Drug Interaction Checker was used to identify pairwise drug-drug interactions (DDIs). Prevalence rates of DDIs were 73.5% and 68.5% among taken and prescribed drugs, respectively. However, the total number of DDIs was significantly higher among the prescribed medications (p < 0.05). Serious DDIs comprised 16% and 7% of all DDIs among the prescribed and taken medications, respectively (p < 0.05). Median numbers of DDIs between the prescribed vs. taken medications were Me = 2, IQR 0-7 vs. Me = 3, IQR 0-7 per record, respectively. Prevalence of polypharmacy was significantly higher among the prescribed medications compared with that among the taken drugs (p < 0.05). Women were taking significantly more drugs and had higher prevalence of polypharmacy and DDIs (p < 0.05). No sex-related differences were observed in the list of prescribed medications. ICD code U07.1 (COVID-19, virus identified) was associated with the highest median DDI number per record. Further research is warranted to improve EHR structure, implement patient engagement in reporting adverse drug reactions, and provide genetic profiling of patients to avoid potentially serious DDIs.

8.
Cell Chem Biol ; 29(10): 1517-1531.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206753

RESUMEN

Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.


Asunto(s)
Tolerancia a Radiación , Telomerasa , Animales , Ratones , Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo , Telómero
9.
Cancer Immun ; 11: 2, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21714479

RESUMEN

Many cancers escape host immunity without losing tumor-specific rejection antigens or MHC class I expression. This study tracks the evolution of one such cancer that developed in a mouse following exposure to ultraviolet light. The primary autochthonous tumor was not highly malignant and was rejected when transplanted into naïve immunocompetent mice. Neoplastic cells isolated from the primary tumor were susceptible to the growth-inhibitory effects of IFNγ in vitro, but expressed very low levels of MHC I antigen and were resistant to tumor-specific T cells unless they were first exposed to IFNγ. Serial passage of the primary tumor cells in vivo led to a highly aggressive variant that caused fast-growing tumors in normal mice. In vitro, the variant tumor cells showed increased resistance to the growth-inhibitory effects of IFNγ but expressed high levels of immunoproteasomes and MHC I molecules and were susceptible to tumor-specific T cells even without prior exposure to IFNγ.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Regulación Neoplásica de la Expresión Génica/inmunología , Interferón gamma/farmacología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/inmunología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes p53 , Humanos , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Desnudos , Mutación , Neoplasias Experimentales/genética , Proteínas Recombinantes , Linfocitos T Citotóxicos/inmunología , Células Tumorales Cultivadas
10.
Expert Opin Drug Saf ; 20(10): 1191-1206, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33970732

RESUMEN

Introduction: The use of potentially inappropriate medications (PIM) is an alarming social risk factor in cardiovascular patients. PIM administration may result in iatrogenic disorders and adverse consequences may be attenuated by limiting PIM intake.Areas covered: The goal of this review article is to discuss the trends, risks, and concerns regarding PIM administration with focus on cardiovascular patients. To find data, we searched literature using electronic databases (Pubmed/Medline 1966-2021 and Web of Science 1975-2021). The data search terms were cardiovascular diseases, potentially inappropriate medication, potentially harmful drug-drug combination, potentially harmful drug-disease combination, drug interaction, deprescribing, and electronic health record.Expert opinion: Drugs for heart diseases are the most commonly prescribed medications in older individuals. Despite the availability of explicit and implicit PIM criteria, the incidence of PIM use in cardiovascular patients remains high ranging from 7 to 85% in different patient categories. Physician-induced disorders often occur when PIM is administered and adverse effects may be reduced by limiting PIM intake. Main strategies promising for addressing PIM use include deprescribing, implementation of systematic electronic records, pharmacist medication review, and collaboration among cardiologists, internists, geriatricians, clinical pharmacologists, pharmacists, and other healthcare professionals as basis of multidisciplinary assessment teams.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Prescripción Inadecuada/tendencias , Lista de Medicamentos Potencialmente Inapropiados/tendencias , Antivirales/efectos adversos , Fármacos Cardiovasculares/efectos adversos , Interacciones Farmacológicas , Humanos , Prescripción Inadecuada/efectos adversos , Polifarmacia , Medición de Riesgo , Factores de Riesgo , Tratamiento Farmacológico de COVID-19
11.
Int J Radiat Biol ; 85(5): 421-31, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19437244

RESUMEN

PURPOSE: To determine the mechanisms of Signal Transducer and Activator of Transcription 1 (Stat1)-associated radioresistance developed by nu61 tumour selected in vivo by fractionated irradiation of the parental radiosensitive tumour SCC61. MATERIALS AND METHODS: Radioresistence of nu61 and SCC61 in vitro was measured by clonogenic assay. Apoptotic response of nu61 and SCC61 cells to genotoxic stress was examined using caspase-based apoptotic assays. Co-cultivation of carboxyfluorescein diacetate, succinimidyl ester (CFDE-SE)-labeled nu61 with un-labeled SCC61 was performed at 1:1 ratio. Production of interleukin-6, interleukin-8 and soluble receptor of interleukin 6 (IL6, IL8 and sIL6R) was measured using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS: Radioresistant nu61 was also resistant to interferon-gamma (IFNgamma) and the death ligands of tumour necrosis factor alpha receptor (TNFR) family when compared to SCC61. This combined resistance is due to an impaired apoptotic response in nu61. Relative to SCC61, nu61 produced more IL6, IL8 and sIL6R. Using Stat1 knock-downs we demonstrated that IL6 and IL8 production is Stat1-dependent. Treatment with neutralising antibodies to IL6 and IL8, but not to either cytokine alone sensitised nu61 to genotoxic stress induced apoptosis. CONCLUSION: Nu61, which over-expresses Stat1 pathway, is deficient in apoptotic response to ionising radiation and cytotoxic ligands. This resistance to apoptosis is associated with Stat1-dependent production of IL6 and IL8 and suppression of caspases 8, 9 and 3.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Interleucinas/metabolismo , Neoplasias/patología , Tolerancia a Radiación , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Animales , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Técnicas de Cocultivo , Citocinas/toxicidad , Citotoxinas/toxicidad , Daño del ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Interferón gamma/farmacología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias/genética , Radiación Ionizante , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
12.
Cancer Res ; 67(19): 9214-20, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17909027

RESUMEN

Elsewhere, we reported that multiple serial in vivo passage of a squamous cell carcinoma cells (SCC61) concurrent with ionizing radiation (IR) treatment resulted in the selection of radioresistant tumor (nu61) that overexpresses the signal transducer and activator of transcription 1 (Stat1)/IFN-dependent pathway. Here, we report that (a) the Stat1 pathway is induced by IR, (b) constitutive overexpression of Stat1 is linked with failure to transmit a cytotoxic signal by radiation or IFNs, (c) selection of parental cell line SCC61 against IFN-alpha and IFN-gamma leads to the same IR- and IFN-resistant phenotype as was obtained by IR selection, and (d) suppression of Stat1 by short hairpin RNA renders the IR-resistant nu61 cells radiosensitive to IR. We propose a model that transient induction of Stat1 by IFN, IR, or other stress signals activates cytotoxic genes and cytotoxic response. Constitutive overexpression of Stat1 on the other hand leads to the suppression of the cytotoxic response and induces prosurvival genes that, at high levels of Stat1, render the cells resistant to IR or other inducers of cell death.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Resistencia a Antineoplásicos , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Humanos , Interferón-alfa/farmacología , Interferón gamma/farmacología , Ratones , Ratones Desnudos , Trasplante de Neoplasias , ARN Interferente Pequeño/genética , Tolerancia a Radiación , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/biosíntesis , Factor de Transcripción STAT1/genética , Trasplante Heterólogo
13.
Mol Oncol ; 13(9): 1927-1943, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31225926

RESUMEN

Radioresistance is a major hurdle in the treatment of head and neck squamous cell carcinoma (HNSCC). Here, we report that concomitant treatment of HNSCCs with radiotherapy and mevalonate pathway inhibitors (statins) may overcome resistance. Proteomic profiling and comparison of radioresistant to radiosensitive HNSCCs revealed differential regulation of the mevalonate biosynthetic pathway. Consistent with this finding, inhibition of the mevalonate pathway by pitavastatin sensitized radioresistant SQ20B cells to ionizing radiation and reduced their clonogenic potential. Overall, this study reinforces the view that the mevalonate pathway is a promising therapeutic target in radioresistant HNSCCs.


Asunto(s)
Neoplasias de Cabeza y Cuello/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteómica , Quinolinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Ácido Mevalónico , Radiación Ionizante , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia
14.
Mol Cancer Res ; 17(6): 1338-1350, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30885991

RESUMEN

The metabolic reprogramming associated with characteristic increases in glucose and glutamine metabolism in advanced cancer is often ascribed to answering a higher demand for metabolic intermediates required for rapid tumor cell growth. Instead, recent discoveries have pointed to an alternative role for glucose and glutamine metabolites as cofactors for chromatin modifiers and other protein posttranslational modification enzymes in cancer cells. Beyond epigenetic mechanisms regulating gene expression, many chromatin modifiers also modulate DNA repair, raising the question whether cancer metabolic reprogramming may mediate resistance to genotoxic therapy and genomic instability. Our prior work had implicated N-acetyl-glucosamine (GlcNAc) formation by the hexosamine biosynthetic pathway (HBP) and resulting protein O-GlcNAcylation as a common means by which increased glucose and glutamine metabolism can drive double-strand break (DSB) repair and resistance to therapy-induced senescence in cancer cells. We have examined the effects of modulating O-GlcNAcylation on the DNA damage response (DDR) in MCF7 human mammary carcinoma in vitro and in xenograft tumors. Proteomic profiling revealed deregulated DDR pathways in cells with altered O-GlcNAcylation. Promoting protein O-GlcNAc modification by targeting O-GlcNAcase or simply treating animals with GlcNAc protected tumor xenografts against radiation. In turn, suppressing protein O-GlcNAcylation by blocking O-GlcNAc transferase activity led to delayed DSB repair, reduced cell proliferation, and increased cell senescence in vivo. Taken together, these findings confirm critical connections between cancer metabolic reprogramming, DDR, and senescence and provide a rationale to evaluate agents targeting O-GlcNAcylation in patients as a means to restore tumor sensitivity to radiotherapy. IMPLICATIONS: The finding that the HBP, via its impact on protein O-GlcNAcylation, is a key determinant of the DDR in cancer provides a mechanistic link between metabolic reprogramming, genomic instability, and therapeutic response and suggests novel therapeutic approaches for tumor radiosensitization.


Asunto(s)
Acilación/genética , Proliferación Celular/genética , Senescencia Celular/genética , Reparación del ADN/genética , Animales , Vías Biosintéticas/genética , Neoplasias de la Mama/genética , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Epigénesis Genética/genética , Femenino , Inestabilidad Genómica/genética , Glucosa/genética , Glutamina/genética , Células HEK293 , Hexosaminas/genética , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos
15.
Mol Cancer Ther ; 17(2): 407-418, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030460

RESUMEN

Despite significant advances in combinations of radiotherapy and chemotherapy, altered fractionation schedules and image-guided radiotherapy, many cancer patients fail to benefit from radiation. A prevailing hypothesis is that targeting repair of DNA double strand breaks (DSB) can enhance radiation effects in the tumor and overcome therapeutic resistance without incurring off-target toxicities. Unrepaired DSBs can block cancer cell proliferation, promote cancer cell death, and induce cellular senescence. Given the slow progress to date translating novel DSB repair inhibitors as radiosensitizers, we have explored drug repurposing, a proven route to improving speed, costs, and success rates of drug development. In a prior screen where we tracked resolution of ionizing radiation-induced foci (IRIF) as a proxy for DSB repair, we had identified pitavastatin (Livalo), an HMG-CoA reductase inhibitor commonly used for lipid lowering, as a candidate radiosensitizer. Here, we report that pitavastatin and other lipophilic statins are potent inhibitors of DSB repair in breast and melanoma models both in vitro and in vivo When combined with ionizing radiation, pitavastatin increased persistent DSBs, induced senescence, and enhanced acute effects of radiation on radioresistant melanoma tumors. shRNA knockdown implicated HMG-CoA reductase, farnesyl diphosphate synthase, and protein farnesyl transferase in IRIF resolution, DSB repair, and senescence. These data confirm on-target activity of statins, although via inhibition of protein prenylation rather than cholesterol biosynthesis. In light of prior studies demonstrating enhanced efficacy of radiotherapy in patients taking statins, this work argues for clinical evaluation of lipophilic statins as nontoxic radiosensitizers to enhance the benefits of image-guided radiotherapy. Mol Cancer Ther; 17(2); 407-18. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Asunto(s)
Reparación del ADN/efectos de los fármacos , Acilcoenzima A/farmacología , Animales , Senescencia Celular , Femenino , Humanos , Ratones
16.
Int J Oncol ; 31(6): 1519-28, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17982679

RESUMEN

TNFalpha was initially described as inducing necrotic death in tumors in vivo, and more recently as a cytokine that mediates cytoprotection and inflammation. The anti-tumor effects of TNFalpha are poorly characterized because TNFalpha-induced death of human tumor cells has largely been studied in the presence of agents that block transcription or protein synthesis. Also, most reports in model cell systems describe apoptosis within relatively early time points as the principal mode of cell death induced by TNFalpha. We investigated the cytotoxic effects of 10 ng/ml TNFalpha on human tumor cells of different histological types without concomitant exposure to these inhibitors. Eleven of 21 human tumor cell lines underwent TNFalpha-induced cell death which ranged from 41% to complete loss of viability. Only one cell line demonstrated caspase-dependent apoptosis within 24 h. Nine cell lines underwent death between 48 h and 21 days. Seven of these lines underwent caspase-3 independent death consistent with necrosis. One tumor line exhibited characteristics of senescence following TNFalpha exposure. Nine of 9 cell lines activated NF-kappaB following TNFalpha exposure by 24 h. In all cell lines studied, with the exception of the epidermoid carcinoma cell line that underwent early apoptosis, expression of one or more NF-kappaB target genes was demonstrated at 24-96 h. BMS-345541, a specific IKK inhibitor, increased TNFalpha killing in TNFalpha resistant tumor cell lines by increasing apoptosis, suggesting that inhibition of NF-kappaB may be an effective strategy to enhance the tumoricidal effects of TNFalpha.


Asunto(s)
Apoptosis/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Humanos , Imidazoles/farmacología , FN-kappa B/fisiología , Necrosis , Neoplasias/patología , Quinoxalinas/farmacología
17.
Anticancer Res ; 36(8): 3821-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27466483

RESUMEN

BACKGROUND: The ability to image DNA repair in cancer cells after irradiation, as well as its inhibition by potential therapeutic agents, is important for the further development of effective cancer therapy. 53BP1 is a DNA repair protein that is overexpressed and forms foci when double-stranded DNA breaks occur in DNA. MATERIALS AND METHODS: The re-localization of green fluorescent protein (GFP) fused to the chromatin-binding domain of 53BP1 to form foci was imaged after UVC irradiation of breast and pancreatic cancer cells expressing 53BP1-GFP using confocal microscopy. RESULTS: During live-cell imaging, 53BP1-GFP focus formation was observed within 10 minutes after UVC irradiation. Most 53BP1 foci resolved by 100 minutes. To block UVC-induced double-strand break repair in cancer cells, poly(ADP-ribose) polymerase (PARP) was targeted with ABT-888 (veliparib). PARP inhibition markedly enhanced UVC-irradiation-induced persistence of 53BP1-foci, even beyond 100 minutes after UVC irradiation, and reduced proliferation of breast and pancreatic cancer cells. CONCLUSION: Confocal microscopy of 53BP1-GFP is a powerful method for imaging UVC-induced DNA damage and repair, as well as inhibition of repair.


Asunto(s)
Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/terapia , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Bencimidazoles/administración & dosificación , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Proteínas Fluorescentes Verdes/química , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fotoquimioterapia , Poli(ADP-Ribosa) Polimerasa-1/biosíntesis , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Proteína 1 de Unión al Supresor Tumoral P53/biosíntesis , Rayos Ultravioleta
18.
Mol Cancer Res ; 14(2): 173-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26538285

RESUMEN

UNLABELLED: Conventional wisdom ascribes metabolic reprogramming in cancer to meeting increased demands for intermediates to support rapid proliferation. Prior models have proposed benefits toward cell survival, immortality, and stress resistance, although the recent discovery of oncometabolites has shifted attention to chromatin targets affecting gene expression. To explore further effects of cancer metabolism and epigenetic deregulation, DNA repair kinetics were examined in cells treated with metabolic intermediates, oncometabolites, and/or metabolic inhibitors by tracking resolution of double-strand breaks (DSB) in irradiated MCF7 breast cancer cells. Disrupting cancer metabolism revealed roles for both glycolysis and glutaminolysis in promoting DSB repair and preventing accelerated senescence after irradiation. Targeting pathways common to glycolysis and glutaminolysis uncovered opposing effects of the hexosamine biosynthetic pathway (HBP) and tricarboxylic acid (TCA) cycle. Treating cells with the HBP metabolite N-acetylglucosamine (GlcNAc) or augmenting protein O-GlcNAcylation with small molecules or RNAi targeting O-GlcNAcase each enhanced DSB repair, while targeting O-GlcNAc transferase reversed GlcNAc's effects. Opposing the HBP, TCA metabolites including α-ketoglutarate blocked DSB resolution. Strikingly, DNA repair could be restored by the oncometabolite 2-hydroxyglutarate (2-HG). Targeting downstream effectors of histone methylation and demethylation implicated the PRC1/2 polycomb complexes as the ultimate targets for metabolic regulation, reflecting known roles for Polycomb group proteins in nonhomologous end-joining DSB repair. Our findings that epigenetic effects of cancer metabolic reprogramming may promote DNA repair provide a molecular mechanism by which deregulation of metabolism may not only support cell growth but also maintain cell immortality, drive therapeutic resistance, and promote genomic instability. IMPLICATIONS: By defining a pathway from deregulated metabolism to enhanced DNA damage response in cancer, these data provide a rationale for targeting downstream epigenetic effects of metabolic reprogramming to block cancer cell immortality and overcome resistance to genotoxic stress.


Asunto(s)
Reparación del ADN , Epigénesis Genética , Glutamina/metabolismo , Glucólisis , Neoplasias/metabolismo , Acetilglucosamina/farmacología , Senescencia Celular , ADN/efectos de la radiación , Inestabilidad Genómica , Glucólisis/efectos de los fármacos , Humanos , Células MCF-7 , Neoplasias/genética , Interferencia de ARN
19.
Oncotarget ; 7(23): 33919-33, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27129153

RESUMEN

Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.


Asunto(s)
Antibacterianos/farmacología , Neoplasias de la Mama/radioterapia , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Cefalosporinas/farmacología , Reposicionamiento de Medicamentos , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Células MCF-7 , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Oncogene ; 23(36): 6083-94, 2004 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15208670

RESUMEN

Recently, we identified Insulinoma-Glucagonoma clone 20 (IG20) that can render cells more susceptible to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. In addition, it can slow cell proliferation, and enhance drug- and radiation-induced cell death. TNF-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in some cancer cells and render others susceptible to cotreatment with drugs and irradiation, with little or no effect on most normal cells. In this study, we investigated the potential of IG20 to enhance TRAIL-induced apoptosis and found that it can render cells more susceptible to TRAIL treatment through enhanced activation of caspases. Further, we showed that this effect can be suppressed by caspase inhibitors, p35 and CrmA, and a dominant-negative Fas-associated death domain-containing protein (DN-FADD). Results from colocalization and immunoprecipitation studies showed that IG20 can interact with TRAIL death receptors (DR), DR4 and DR5 and increase recruitment of FADD and caspase-8 into the TRAIL death-inducing signaling complex (DISC). These results indicate that IG20 is a novel protein that can enhance TRAIL-induced apoptosis by facilitating DISC formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Caspasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Glicoproteínas de Membrana/farmacología , Receptores del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Caspasa 8 , Inhibidores de Caspasas , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Proteína de Dominio de Muerte Asociada a Fas , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Complejos Multiproteicos , Mutación , Transporte de Proteínas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Receptores del Factor de Necrosis Tumoral/análisis , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Ligando Inductor de Apoptosis Relacionado con TNF , Transcripción Genética , Transfección , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA