Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 166(3): 740-754, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27397505

RESUMEN

Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Análisis de Varianza , Línea Celular Tumoral , Metilación de ADN , Resistencia a Antineoplásicos/genética , Dosificación de Gen , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Oncogenes , Medicina de Precisión
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33762304

RESUMEN

MYCN-amplified neuroblastoma is a lethal subset of pediatric cancer. MYCN drives numerous effects in the cell, including metabolic changes that are critical for oncogenesis. The understanding that both compensatory pathways and intrinsic redundancy in cell systems exists implies that the use of combination therapies for effective and durable responses is necessary. Additionally, the most effective targeted therapies exploit an "Achilles' heel" and are tailored to the genetics of the cancer under study. We performed an unbiased screen on select metabolic targeted therapy combinations and correlated sensitivity with over 20 subsets of cancer. We found that MYCN-amplified neuroblastoma is hypersensitive to the combination of an inhibitor of the lactate transporter MCT1, AZD3965, and complex I of the mitochondrion, phenformin. Our data demonstrate that MCT4 is highly correlated with resistance to the combination in the screen and lowly expressed in MYCN-amplified neuroblastoma. Low MCT4 combines with high expression of the MCT2 and MCT1 chaperone CD147 in MYCN-amplified neuroblastoma, altogether conferring sensitivity to the AZD3965 and phenformin combination. The result is simultaneous disruption of glycolysis and oxidative phosphorylation, resulting in dramatic disruption of adenosine triphosphate (ATP) production, endoplasmic reticulum stress, and cell death. In mouse models of MYCN-amplified neuroblastoma, the combination was tolerable at concentrations where it shrank tumors and did not increase white-blood-cell toxicity compared to single drugs. Therefore, we demonstrate that a metabolic combination screen can identify vulnerabilities in subsets of cancer and put forth a metabolic combination therapy tailored for MYCN-amplified neuroblastoma that demonstrates efficacy and tolerability in vivo.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Simportadores/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Basigina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Amplificación de Genes , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Fenformina/farmacología , Fenformina/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Simportadores/metabolismo , Tiofenos/farmacología , Tiofenos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
3.
PLoS Biol ; 16(8): e2005756, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157175

RESUMEN

Necroptosis is a lytic programmed cell death mediated by the RIPK1-RIPK3-MLKL pathway. The loss of Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) expression and necroptotic potential have been previously reported in several cancer cell lines; however, the extent of this loss across cancer types, as well as its mutational drivers, were unknown. Here, we show that RIPK3 expression loss occurs progressively during tumor growth both in patient tumor biopsies and tumor xenograft models. Using a cell-based necroptosis sensitivity screen of 941 cancer cell lines, we find that escape from necroptosis is prevalent across cancer types, with an incidence rate of 83%. Genome-wide bioinformatics analysis of this differential necroptosis sensitivity data in the context of differential gene expression and mutation data across the cell lines identified various factors that correlate with resistance to necroptosis and loss of RIPK3 expression, including oncogenes BRAF and AXL. Inhibition of these oncogenes can rescue the RIPK3 expression loss and regain of necroptosis sensitivity. This genome-wide analysis also identifies that the loss of RIPK3 expression is the primary factor correlating with escape from necroptosis. Thus, we conclude that necroptosis resistance of cancer cells is common and is oncogene driven, suggesting that escape from necroptosis could be a potential hallmark of cancer, similar to escape from apoptosis.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Necrosis/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
4.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858180

RESUMEN

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Asunto(s)
Biología Computacional , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Melanoma/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunoterapia , Masculino , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Mutaciones Letales Sintéticas
5.
Nat Commun ; 14(1): 3830, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380628

RESUMEN

Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Combinación de Medicamentos
6.
Nat Commun ; 13(1): 6744, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347861

RESUMEN

Targeting TEAD autopalmitoylation has been proposed as a therapeutic approach for YAP-dependent cancers. Here we show that TEAD palmitoylation inhibitor MGH-CP1 and analogues block cancer cell "stemness", organ overgrowth and tumor initiation in vitro and in vivo. MGH-CP1 sensitivity correlates significantly with YAP-dependency in a large panel of cancer cell lines. However, TEAD inhibition or YAP/TAZ knockdown leads to transient inhibition of cell cycle progression without inducing cell death, undermining their potential therapeutic utilities. We further reveal that TEAD inhibition or YAP/TAZ silencing leads to VGLL3-mediated transcriptional activation of SOX4/PI3K/AKT signaling axis, which contributes to cancer cell survival and confers therapeutic resistance to TEAD inhibitors. Consistently, combination of TEAD and AKT inhibitors exhibits strong synergy in inducing cancer cell death. Our work characterizes the therapeutic opportunities and limitations of TEAD palmitoylation inhibitors in cancers, and uncovers an intrinsic molecular mechanism, which confers potential therapeutic resistance.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Lipoilación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
7.
Science ; 378(6624): 1097-1104, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480603

RESUMEN

The search for cell-permeable drugs has conventionally focused on low-molecular weight (MW), nonpolar, rigid chemical structures. However, emerging therapeutic strategies break traditional drug design rules by employing flexibly linked chemical entities composed of more than one ligand. Using complementary genome-scale chemical-genetic approaches we identified an endogenous chemical uptake pathway involving interferon-induced transmembrane proteins (IFITMs) that modulates the cell permeability of a prototypical biopic inhibitor of MTOR (RapaLink-1, MW: 1784 g/mol). We devised additional linked inhibitors targeting BCR-ABL1 (DasatiLink-1, MW: 1518 g/mol) and EIF4A1 (BisRoc-1, MW: 1466 g/mol), uptake of which was facilitated by IFITMs. We also found that IFITMs moderately assisted some proteolysis-targeting chimeras and examined the physicochemical requirements for involvement of this uptake pathway.

8.
Cell Rep ; 40(4): 111095, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905710

RESUMEN

Reoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB. We find that NB models are among the most sensitive among over 900 tumor-derived cell lines to the allosteric SHP2 inhibitor SHP099. Sensitivity to SHP099 in NB is greater in models with loss or low expression of the RAS GTPase activation protein (GAP) neurofibromin 1 (NF1). Furthermore, NF1 is lower in advanced and relapsed NB and NF1 loss is enriched in high-risk NB tumors regardless of MYCN status. SHP2 inhibition consistently blocks tumor growth in high-risk NB mouse models, revealing a new drug target in relapsed NB.


Asunto(s)
Neuroblastoma , Neurofibromina 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Línea Celular Tumoral , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
9.
Cancer Res Commun ; 2(9): 1061-1074, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36506869

RESUMEN

Preclinical and clinical studies have evidenced that effective targeted therapy treatment against receptor tyrosine kinases (RTKs) in different solid tumor paradigms is predicated on simultaneous inhibition of both the PI3K and MEK intracellular signaling pathways. Indeed, re-activation of either pathway results in resistance to these therapies. Recently, oncogenic phosphatase SHP2 inhibitors have been developed with some now reaching clinical trials. To expand on possible indications for SHP099, we screened over 800 cancer cell lines covering over 25 subsets of cancer. We found HNSCC was the most sensitive adult subtype of cancer to SHP099. We found that, in addition to the MEK pathway, SHP2 inhibition blocks the PI3K pathway in sensitive HNSCC, resulting in downregulation of mTORC signaling and anti-tumor effects across several HNSCC mouse models, including an HPV+ patient-derived xenograft (PDX). Importantly, we found low levels of the RTK ligand epiregulin identified HNSCCs that were sensitive to SHP2 inhibitor, and, adding exogenous epiregulin mitigated SHP099 efficacy. Mechanistically, epiregulin maintained SHP2-GAB1 complexes in the presence of SHP2 inhibition, preventing downregulation of the MEK and PI3K pathways. We demonstrate HNSCCs were highly dependent on GAB1 for their survival and knockdown of GAB1 is sufficient to block the ability of epiregulin to rescue MEK and PI3K signaling. These data connect the sensitivity of HNSCC to SHP2 inhibitors and to a broad reliance on GAB1-SHP2, revealing an important and druggable signaling axis. Overall, SHP2 inhibitors are being heavily developed and may have activity in HNSCCs, and in particular those with low levels of epiregulin.


Asunto(s)
Neoplasias de Cabeza y Cuello , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Epirregulina/metabolismo , Inhibidores Enzimáticos/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
10.
Clin Cancer Res ; 25(2): 796-807, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30327306

RESUMEN

PURPOSE: KRAS-mutant lung cancers have been recalcitrant to treatments including those targeting the MAPK pathway. Covalent inhibitors of KRAS p.G12C allele allow for direct and specific inhibition of mutant KRAS in cancer cells. However, as for other targeted therapies, the therapeutic potential of these inhibitors can be impaired by intrinsic resistance mechanisms. Therefore, combination strategies are likely needed to improve efficacy.Experimental Design: To identify strategies to maximally leverage direct KRAS inhibition we defined the response of a panel of NSCLC models bearing the KRAS G12C-activating mutation in vitro and in vivo. We used a second-generation KRAS G12C inhibitor, ARS1620 with improved bioavailability over the first generation. We analyzed KRAS downstream effectors signaling to identify mechanisms underlying differential response. To identify candidate combination strategies, we performed a high-throughput drug screening across 112 drugs in combination with ARS1620. We validated the top hits in vitro and in vivo including patient-derived xenograft models. RESULTS: Response to direct KRAS G12C inhibition was heterogeneous across models. Adaptive resistance mechanisms involving reactivation of MAPK pathway and failure to induce PI3K-AKT pathway inactivation were identified as likely resistance events. We identified several model-specific effective combinations as well as a broad-sensitizing effect of PI3K-AKT-mTOR pathway inhibitors. The G12Ci+PI3Ki combination was effective in vitro and in vivo on models resistant to single-agent ARS1620 including patient-derived xenografts models. CONCLUSIONS: Our findings suggest that signaling adaptation can in some instances limit the efficacy of ARS1620 but combination with PI3K inhibitors can overcome this resistance.


Asunto(s)
Alelos , Resistencia a Antineoplásicos/genética , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Silenciador del Gen , Humanos , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos
11.
PLoS One ; 13(7): e0201046, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30028875

RESUMEN

Since microRNAs (miRNAs, miRs) have been implicated in oncogenesis, many of them have been identified as therapeutic targets. Previously we have demonstrated that miRNA-10b acts as a master regulator of the viability of metastatic tumor cells and represents a target for therapeutic intervention. We designed and synthesized an inhibitor of miR-10b, termed MN-anti-miR10b. We showed that treatment with MN-anti-miR10b led to durable regression/elimination of established metastases in murine models of metastatic breast cancer. Since miRNA-10b has been associated with various metastatic and non-metastatic cancers, in the present study, we investigated the effect of MN-anti-miR10b in a panel of over 600 cell lines derived from a variety of human malignancies. We observed an effect on the viability of multiple cell lines within each cancer type and a mostly dichotomous response with cell lines either strongly responsive to MN-anti-miR10b or not at all even at maximum dose tested, suggesting a very high specificity of the effect. Genomic modeling of the drug response showed enrichment of genes associated with the proto-oncogene, c-Jun.


Asunto(s)
Antagomirs/farmacología , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Animales , Antagomirs/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Genómica , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Metástasis de la Neoplasia , Proto-Oncogenes Mas
12.
Cell Rep ; 22(7): 1889-1902, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444439

RESUMEN

KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention.


Asunto(s)
Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenilato Quinasa/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
13.
Cancer Discov ; 8(12): 1582-1597, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254093

RESUMEN

The prosurvival BCL2 family member MCL1 is frequently dysregulated in cancer. To overcome the significant challenges associated with inhibition of MCL1 protein-protein interactions, we rigorously applied small-molecule conformational restriction, which culminated in the discovery of AMG 176, the first selective MCL1 inhibitor to be studied in humans. We demonstrate that MCL1 inhibition induces a rapid and committed step toward apoptosis in subsets of hematologic cancer cell lines, tumor xenograft models, and primary patient samples. With the use of a human MCL1 knock-in mouse, we demonstrate that MCL1 inhibition at active doses of AMG 176 is tolerated and correlates with clear pharmacodynamic effects, demonstrated by reductions in B cells, monocytes, and neutrophils. Furthermore, the combination of AMG 176 and venetoclax is synergistic in acute myeloid leukemia (AML) tumor models and in primary patient samples at tolerated doses. These results highlight the therapeutic promise of AMG 176 and the potential for combinations with other BH3 mimetics. SIGNIFICANCE: AMG 176 is a potent, selective, and orally bioavailable MCL1 inhibitor that induces a rapid commitment to apoptosis in models of hematologic malignancies. The synergistic combination of AMG 176 and venetoclax demonstrates robust activity in models of AML at tolerated doses, highlighting the promise of BH3-mimetic combinations in hematologic cancers.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.

14.
Cancer Discov ; 6(7): 727-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27231123

RESUMEN

UNLABELLED: Intrahepatic cholangiocarcinoma (ICC) is an aggressive liver bile duct malignancy exhibiting frequent isocitrate dehydrogenase (IDH1/IDH2) mutations. Through a high-throughput drug screen of a large panel of cancer cell lines, including 17 biliary tract cancers, we found that IDH mutant (IDHm) ICC cells demonstrate a striking response to the multikinase inhibitor dasatinib, with the highest sensitivity among 682 solid tumor cell lines. Using unbiased proteomics to capture the activated kinome and CRISPR/Cas9-based genome editing to introduce dasatinib-resistant "gatekeeper" mutant kinases, we identified SRC as a critical dasatinib target in IDHm ICC. Importantly, dasatinib-treated IDHm xenografts exhibited pronounced apoptosis and tumor regression. Our results show that IDHm ICC cells have a unique dependency on SRC and suggest that dasatinib may have therapeutic benefit against IDHm ICC. Moreover, these proteomic and genome-editing strategies provide a systematic and broadly applicable approach to define targets of kinase inhibitors underlying drug responsiveness. SIGNIFICANCE: IDH mutations define a distinct subtype of ICC, a malignancy that is largely refractory to current therapies. Our work demonstrates that IDHm ICC cells are hypersensitive to dasatinib and critically dependent on SRC activity for survival and proliferation, pointing to new therapeutic strategies against these cancers. Cancer Discov; 6(7); 727-39. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 681.


Asunto(s)
Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Dasatinib/farmacología , Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/genética , Mutación , Familia-src Quinasas/metabolismo , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA