RESUMEN
Immune checkpoint inhibitors are currently tested in different combinations in patients with advanced hepatocellular carcinoma (HCC). Nivolumab, an anti-PD-1 agent, has gained approval in the second-line setting in the USA. Epigenetic drugs have immune-mediated antitumor effects that may improve the activity of immunotherapy agents. Our aim was to study the therapeutic efficacy of checkpoint inhibitors (anti-CTLA-4 and anti-PD-1 antibodies) in combination with the histone deacetylase inhibitor (HDACi) Belinostat. In a subcutaneous Hepa129 murine HCC model, we demonstrated that Belinostat improves the antitumor activity of anti-CTLA-4 but not of anti-PD-1 therapy. This effect correlated with enhanced IFN-γ production by antitumor T-cells and a decrease in regulatory T-cells. Moreover, the combination induced early upregulation of PD-L1 on tumor antigen-presenting cells and late expression of PD-1 on tumor-infiltrating effector T-cells, suggesting the suitability of PD-1 blockade. Indeed, Belinostat combined with the simultaneous blockade of CTLA-4 and PD-1 led to complete tumor rejection. These results provide a rationale for testing Belinostat in combination with checkpoint inhibitors to enhance their therapeutic activity in patients with HCC.
Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/administración & dosificación , Ácidos Hidroxámicos/administración & dosificación , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Sulfonamidas/administración & dosificación , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Macrófagos/fisiología , Ratones , Ratones Endogámicos C3H , Linfocitos T Reguladores/inmunologíaRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2022.1044025.].
RESUMEN
Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.
RESUMEN
IL12-based local gene therapy of cancer constitutes an active area of clinical research using plasmids, mRNAs, and viral vectors. To improve antitumor effects, we have experimentally tested the combination of mRNA constructs encoding IL12 and IL18. Moreover, we have used a form of IL18 [decoy-resistant IL18 (DR-18)] which has preserved bioactivity but does not bind to the IL18 binding protein decoy receptor. Both cytokines dramatically synergize to induce IFNγ release from mouse splenocytes, and, if systemically cotransferred to the liver, they mediate lethal toxicity. However, if given intratumorally to B16OVA tumor-bearing mice, the combination attains efficacy against the directly treated tumor and moderate tumor-delaying activity on distant noninjected lesions. Cotreatment was conducive to the presence of more activated CD8+ T cells in the treated and noninjected tumors. In keeping with these findings, the efficacy of treatment was contingent on the integrity of CD8+ T cells and cDC1 dendritic cells in the treated mice. Furthermore, efficacy of IL12 plus DR-18 local mRNA coinjection against distant concomitant tumors could be enhanced upon combination with anti-PD-1 mAb systemic treatment, thus defining a feasible synergistic immunotherapy strategy.
Asunto(s)
Interleucina-18 , Neoplasias , Animales , Ratones , Neoplasias/genética , Neoplasias/terapia , Linfocitos T CD8-positivos , Inmunoterapia , Interleucina-12/metabolismoRESUMEN
Current vaccines against SARS-CoV-2, based on the original Wuhan sequence, induce antibodies with different degrees of cross-recognition of new viral variants of concern. Despite potent responses generated in vaccinated and infected individuals, the Omicron (B.1.1.529) variant causes breakthrough infections, facilitating viral transmission. We previously reported a vaccine based on a cyclic peptide containing the 446-488 S1 sequence (446-488cc) of the SARS-CoV-2 spike (S) protein from Wuhan isolate. To provide the best immunity against Omicron, here we compared Omicron-specific immunity induced by a Wuhan-based 446-488cc peptide, by a Wuhan-based recombinant receptor-binding domain (RBD) vaccine and by a new 446-488cc peptide vaccine based on the Omicron sequence. Antibodies induced by Wuhan peptide 446-488cc in three murine strains not only recognized the Wuhan and Omicron 446-488 peptides similarly, but also Wuhan and Omicron RBD protein variants. By contrast, antibodies induced by the Wuhan recombinant RBD vaccine showed a much poorer cross-reactivity for the Omicron RBD despite similar recognition of Wuhan and Omicron peptide variants. Finally, although the Omicron-based 446-488cc peptide vaccine was poorly immunogenic in mice due to the loss of T cell epitopes, co-immunization with Omicron peptide 446-488cc and exogenous T cell epitopes induced strong cross-reactive antibodies that neutralized Omicron SARS-CoV-2 virus. Since mutations occurring within this sequence do not alter T cell epitopes in humans, these results indicate the robust immunogenicity of 446-488cc-based peptide vaccines that induce antibodies with a high cross-recognition capacity against Omicron, and suggest that this sequence could be included in future vaccines targeting the Omicron variant.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , Epítopos de Linfocito T , COVID-19/prevención & control , Vacunas de Subunidad , AnticuerposRESUMEN
Vaccination using optimized strategies may increase response rates to immune checkpoint inhibitors (ICI) in some tumors. To enhance vaccine potency and improve thus responses to ICI, we analyzed the gene expression profile of an immunosuppressive dendritic cell (DC) population induced during vaccination, with the goal of identifying druggable inhibitory mechanisms. RNAseq studies revealed targetable genes, but their inhibition did not result in improved vaccines. However, we proved that immunosuppressive DC had a monocytic origin. Thus, monocyte depletion by gemcitabine administration reduced the generation of these DC and increased vaccine-induced immunity, which rejected about 20% of LLC-OVA and B16-OVA tumors, which are non-responders to anti-PD-1. This improved efficacy was associated with higher tumor T-cell infiltration and overexpression of PD-1/PD-L1. Therefore, the combination of vaccine + gemcitabine with anti-PD-1 was superior to anti-PD-1 monotherapy in both models. B16-OVA tumors benefited from a synergistic effect, reaching 75% of tumor rejection, but higher levels of exhausted T-cells in LLC-OVA tumors co-expressing PD-1, LAG3 and TIM3 precluded similar levels of efficacy. Our results indicate that gemcitabine is a suitable combination therapy with vaccines aimed at enhancing PD-1 therapies by targeting vaccine-induced immunosuppressive DC.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Antígeno B7-H1 , Receptor 2 Celular del Virus de la Hepatitis A , Inhibidores de Puntos de Control Inmunológico , Vacunación , Neoplasias/tratamiento farmacológico , Células Dendríticas , GemcitabinaRESUMEN
The ability of conventional type-1 dendritic cells (cDC1) to cross-present tumor antigens to CD8+ T cells is critical for the induction of antitumor CTLs. Mice that are constitutively deficient in cDC1 cells have been reported to fail to respond to immunotherapy strategies based on checkpoint inhibitors. However, further work is needed to clarify the precise time during immunotherapy treatment that cDC1 cells are required for the beneficial effect of treatment. Here, we used a refined XCR1-DTR-Venus transgenic mouse model to acutely deplete cDC1 cells and trace their behavior using intravital microscopy. Diphtheria toxin-mediated cDC1 depletion prior to immunotherapy treatment with anti-PD-1 and/or anti-CD137 immunostimulatory mAbs completely ablated antitumor efficacy. The efficacy of adoptive T-cell therapy was also hampered by prior cDC1 depletion. After the onset of immunotherapy treatment, depletion of cDC1s only moderately reduced the therapeutic efficacy of anti-PD-1 and anti-CD137 mAbs. Intravital microscopy of liver-engrafted tumors revealed changes in the intratumoral behavior of cDC1 cells in mice receiving immunotherapy, and treatment with diphtheria toxin to deplete cDC1s impaired tumor T-cell infiltration and function. These results reveal that the functional integrity of the cDC1 compartment is required at the onset of various immunotherapies to successfully treat established tumors. SIGNIFICANCE: These findings reveal the intratumoral behavior of cDC1 dendritic cells in transgenic mouse models and demonstrate that the efficacy of immunotherapy regimens is precluded by elimination of these cells.
Asunto(s)
Toxina Diftérica , Neoplasias Hepáticas , Ratones , Animales , Células Dendríticas , Inmunoterapia/métodos , Linfocitos T CD8-positivos , Anticuerpos Monoclonales , Ratones Transgénicos , Neoplasias Hepáticas/tratamiento farmacológicoRESUMEN
Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNFα and IL-1ß upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNFα and IL-1ß induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNFα blockers infliximab and etanercept or the IL-1ß inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNFα blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE: IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNFα and IL-1ß are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents. This article is highlighted in the In This Issue feature, p. 2007.
Asunto(s)
Citocinas , Factor de Necrosis Tumoral alfa , Animales , Citocinas/metabolismo , Humanos , Infliximab/farmacología , Infliximab/uso terapéutico , Interleucina-1beta/metabolismo , Interleucina-8/genética , Ratones , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
BACKGROUND: Neoantigens, new immunogenic sequences arising from tumor mutations, have been associated with response to immunotherapy and are considered potential targets for vaccination. Hepatocellular carcinoma (HCC) is a moderately mutated tumor, where the neoantigen repertoire has not been investigated. Our aim was to analyze whether tumors in HCC patients contain immunogenic neoantigens suitable for future use in therapeutic vaccination. METHODS: Whole-exome sequencing and RNAseq were performed in a cohort of fourteen HCC patients submitted to surgery or liver transplant. To identify mutations, single-nucleotide variants (SNV) originating non-synonymous changes that were confirmed at the RNA level were analyzed. Immunogenicity of putative neoAgs predicted by HLA binding algorithms was confirmed by using in vitro HLA binding assays and T-cell stimulation experiments, the latter in vivo, by immunizing HLA-A*02.01/HLA-DRB1*01 (HHD-DR1) transgenic mice, and in in vitro, using human lymphocytes. RESULTS: Sequencing led to the identification of a median of 1217 missense somatic SNV per patient, narrowed to 30 when filtering by using RNAseq data. A median of 13 and 5 peptides per patient were predicted as potential binders to HLA class I and class II molecules, respectively. Considering only HLA-A*02.01- and HLA-DRB1*01-predicted binders, 70% demonstrated HLA-binding capacity and about 50% were immunogenic when tested in HHD-DR1 mice. These peptides induced polyfunctional T cells that specifically recognized the mutated but not the wild-type sequence as well as neoantigen-expressing cells. Moreover, coimmunization experiments combining CD8 and CD4 neoantigen epitopes resulted in stronger CD8 T cell responses. Finally, responses against neoantigens were also induced in vitro using human cells. CONCLUSION: These results show that mutations in HCC tumors may generate immunogenic neoantigens with potential applicability for future combinatorial therapeutic strategies.
Asunto(s)
Antígenos de Neoplasias/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Antígenos de Neoplasias/farmacología , Vacunas contra el Cáncer/farmacología , Humanos , RatonesRESUMEN
Analyzing immunomodulatory elements operating during antitumor vaccination in prostate cancer patients and murine models we identified IL-10-producing DC as a subset with poorer immunogenicity and clinical efficacy. Inhibitory TAM receptors MER and AXL were upregulated on murine IL-10+ DC. Thus, we analyzed conditions inducing these molecules and the potential benefit of their blockade during vaccination. MER and AXL upregulation was more efficiently induced by a vaccine containing Imiquimod than by a poly(I:C)-containing vaccine. Interestingly, MER expression was found on monocyte-derived DC, and was dependent on IL-10. TAM blockade improved Imiquimod-induced DC activation in vitro and in vivo, resulting in increased vaccine-induced T-cell responses, which were further reinforced by concomitant IL-10 inhibition. In different tumor models, a triple therapy (including vaccination, TAM inhibition and IL-10 blockade) provided the strongest therapeutic effect, associated with enhanced T-cell immunity and enhanced CD8+ T cell tumor infiltration. Finally, MER levels in DC used for vaccination in cancer patients correlated with IL-10 expression, showing an inverse association with vaccine-induced clinical response. These results suggest that TAM receptors upregulated during vaccination may constitute an additional target in combinatorial therapeutic vaccination strategies.
Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Inmunoterapia/métodos , Melanoma Experimental/terapia , Neoplasias de la Próstata/terapia , Adyuvantes Inmunológicos/administración & dosificación , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Línea Celular Tumoral , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Imiquimod/administración & dosificación , Inmunogenicidad Vacunal/efectos de los fármacos , Interleucina-10/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Transgénicos , Poli I-C/administración & dosificación , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Pirimidinas , Quinolinas , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa del Receptor AxlRESUMEN
Identification of relevant epitopes is crucial for the development of subunit peptide vaccines inducing neutralizing and cellular immunity against SARS-CoV-2. Our aim was the characterization of epitopes in the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to generate a peptide vaccine. Epitope mapping using a panel of 10 amino acid overlapped 15-mer peptides covering region 401-515 from RBD did not identify linear epitopes when tested with sera from infected individuals or from RBD-immunized mice. However, immunization of mice with these 15-mer peptides identified four peptides located at region 446-480 that induced antibodies recognizing the peptides and RBD/S1 proteins. Immunization with peptide 446-480 from S protein formulated with Freund's adjuvant or with CpG oligodeoxinucleotide/Alum induced polyepitopic antibody responses in BALB/c and C56BL/6J mice, recognizing RBD (titres of 3 × 104-3 × 105, depending on the adjuvant) and displaying neutralizing capacity (80-95% inhibition capacity; p < 0.05) against SARS-CoV-2. Murine CD4 and CD8T-cell epitopes were identified in region 446-480 and vaccination experiments using HLA transgenic mice suggested the presence of multiple human T-cell epitopes. Antibodies induced by peptide 446-480 showed broad recognition of S proteins and S-derived peptides belonging to SARS-CoV-2 variants of concern. Importantly, vaccination with peptide 446-480 or with a cyclic version of peptide 446-488 containing a disulphide bridge between cysteines 480 and 488, protected humanized K18-hACE2 mice from a lethal dose of SARS-CoV-2 (62.5 and 75% of protection; p < 0.01 and p < 0.001, respectively). This region could be the basis for a peptide vaccine or other vaccine platforms against Covid-19.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Celular , Inmunidad Humoral , SARS-CoV-2/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/normas , Reacciones Cruzadas/inmunología , Mapeo Epitopo , Epítopos de Linfocito B , Epítopos de Linfocito T/inmunología , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunologíaRESUMEN
Therapies based on immune checkpoint inhibitors (ICPI) have yielded promising albeit limited results in patients with hepatocellular carcinoma (HCC). Vaccines have been proposed as combination partners to enhance response rates to ICPI. Thus, we analyzed the combined effect of a vaccine based on the TLR4 ligand cold-inducible RNA binding protein (CIRP) plus ICPI. Mice were immunized with vaccines containing ovalbumin linked to CIRP (OVA-CIRP), with or without ICPI, and antigen-specific responses and therapeutic efficacy were tested in subcutaneous and orthotopic mouse models of liver cancer. OVA-CIRP elicited polyepitopic T-cell responses, which were further enhanced when combined with ICPI (anti-PD-1 and anti-CTLA-4). Combination of OVA-CIRP with ICPI enhanced ICPI-induced therapeutic responses when tested in subcutaneous and intrahepatic B16-OVA tumors, as well as in the orthotopic PM299L HCC model. This effect was associated with higher OVA-specific T-cell responses in the periphery, although many tumor-infiltrating lymphocytes still displayed an exhausted phenotype. Finally, a new vaccine containing human glypican-3 linked to CIRP (GPC3-CIRP) induced clear responses in humanized HLA-A2.01 transgenic mice, which increased upon combination with ICPI. Therefore, CIRP-based vaccines may generate anti-tumor immunity to enhance ICPI efficacy in HCC, although blockade of additional checkpoint molecules and immunosuppressive targets should be also considered.