Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749326

RESUMEN

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Immunity ; 57(9): 2005-2007, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260352

RESUMEN

Aging leads to alterations that precipitate or aggravate several diseases that occur across our lifespan. In the CNS, aging affects the capacity to maintain and repair the myelin sheaths that protect axons and facilitate neuronal signaling. Tiwari et al. report aging-associated transcriptional responses in microglia after demyelination, which could be reversed by epigenetic remodeling after BCG vaccination.


Asunto(s)
Envejecimiento , Vacuna BCG , Vaina de Mielina , Remielinización , Vacuna BCG/inmunología , Humanos , Envejecimiento/inmunología , Animales , Vaina de Mielina/inmunología , Vaina de Mielina/metabolismo , Microglía/inmunología , Enfermedades Desmielinizantes/inmunología , Epigénesis Genética , Ratones , Vacunación
3.
J Immunol ; 211(12): 1868-1876, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37909834

RESUMEN

Isolation of placental macrophages using enzymatic digestion at warm temperatures is widely used for in vitro studies. However, studies in brain and kidney tissue show that this method activates immune cells, immediate early genes, and heat shock proteins. Isolating placental macrophages while preserving their tissue-specific characteristics as much as possible is pivotal to reliably studying their functions. We therefore developed a mechanical dissociation protocol at low temperatures and compared this to enzymatic digestion at high temperatures. Decidual and villous macrophages were isolated from term human placentas. A cell suspension was generated by mechanical dissociation using a gentleMACS. For warm enzymatic digestion, Accutase was added, followed by incubation at 37°C. Macrophages were isolated after Ficoll density gradient centrifugation. Cell types were analyzed with flow cytometry (CD45, CD14, CD80, CD86, CD163, and CD206) and their activation status with real-time PCR (FOS, JUN, HSP27, HSP70, IL1ß, TNFα, IL10, and TGFß) after cell sorting. A higher proportion of leukocytes and macrophages was obtained from the villi with cold mechanical dissociation (p < 0.05). Compared to warm enzymatic digestion, cold mechanical dissociation resulted in a higher expression of CD163 in villous and decidual macrophages (p < 0.05). Warm enzymatic digestion showed higher levels of TNFα, IL1ß, and IL10 in decidual and villous macrophages, and HSP70 in villous macrophages. Our data show that mechanical dissociation of placental tissue at low temperatures is associated with less activation of placental macrophages. This suggests that cold mechanical dissociation is a preferred method, resulting in macrophages that more closely resemble their in-tissue state.


Asunto(s)
Placenta , Factor de Necrosis Tumoral alfa , Embarazo , Femenino , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Citometría de Flujo
4.
Brain ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39397771

RESUMEN

Dysfunctional GABAergic and dopaminergic neurons are thought to exist in the ventral midbrain of patients with schizophrenia, yet transcriptional changes underpinning these abnormalities have not yet been localized to specific neuronal subsets. In the ventral midbrain, control over dopaminergic activity is maintained by both excitatory (glutamate) and inhibitory (GABA) input neurons. To further elucidate neuron pathology at the single-cell level, we characterized the transcriptional diversity of distinct NEUN+ populations in the human ventral midbrain and then tested for schizophrenia-associated changes in neuronal subset proportions and gene activity changes within neuronal subsets. Combining single nucleus RNA-sequencing with fluorescence-activated sorting of NEUN+ nuclei, we analysed 31,669 nuclei. Initially, we detected 18 transcriptionally distinct neuronal populations in the human ventral midbrain, including 2 "mixed" populations. The presence of neuronal populations in the midbrain was orthogonally validated with immunohistochemical stainings. "Mixed" populations contained nuclei expressing transcripts for vesicular glutamate transporter 2 (SLC17A6) and Glutamate Decarboxylase 2 (GAD2), but these transcripts were not typically co-expressed by the same nucleus. Upon more fine-grained subclustering of the 2 "mixed" populations, 16 additional subpopulations were identified that were transcriptionally classified as excitatory or inhibitory. In the midbrains of individuals with schizophrenia, we observed potential differences in the proportions of two (sub)populations of excitatory neurons, two subpopulations of inhibitory neurons, one "mixed" subpopulation, and one subpopulation of TH-expressing neurons. This may suggest that transcriptional changes associated with schizophrenia broadly affect excitatory, inhibitory, and dopamine neurons. We detected 99 genes differentially expressed in schizophrenia compared to controls within neuronal subpopulations identified from the 2 "mixed" populations, with the majority (67) of changes within small GABAergic neuronal subpopulations. Overall, single-nucleus transcriptomic analyses profiled a high diversity of GABAergic neurons in the human ventral midbrain, identified putative shifts in the proportion of neuronal subpopulations, and suggested dysfunction of specific GABAergic subpopulations in schizophrenia, providing directions for future research.

5.
J Neurosci Res ; 102(3): e25295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38515329

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aß) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases. However, the initial transcriptional changes in these microglia in response to amyloid are still unknown. Here, to determine early changes in microglia gene expression, hippocampal microglia from male APPswe/PS1dE9 (APP/PS1) mice and wild-type littermates were isolated and analyzed by RNA sequencing (RNA-seq). By bulk RNA-seq, transcriptomic changes were detected in hippocampal microglia from 6-months-old APP/PS1 mice. By performing single-cell RNA-seq of CD11c-positive and negative microglia from 6-months-old APP/PS1 mice and analysis of the transcriptional trajectory from homeostatic to CD11c-positive microglia, we identified a set of genes that potentially reflect the initial response of microglia to Aß.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Humanos , Lactante , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Ratones Transgénicos , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Placa Amiloide , Presenilina-1/genética , Transcriptoma
6.
7.
Glia ; 71(10): 2356-2371, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37293807

RESUMEN

Microglia are the resident macrophages of the central nervous system (CNS) and play a pivotal role in immune surveillance and CNS homeostasis. Morphological transitions in microglia are indicative for local changes in the CNS microenvironment and serve as a proxy for the detection of alterations in the CNS, both in health and disease. Current strategies to 'measure' microglia combine advanced morphometrics with clustering approaches to identify and categorize microglia morphologies. However, these studies are labor intensive and clustering approaches are often subject to relevant feature selection bias. Here, we provide a morphometrics pipeline with user-friendly computational tools for image segmentation, automated feature extraction and morphological categorization of microglia by means of hierarchical clustering on principal components (HCPC) without the need for feature inclusion criteria. With this pipeline we provide new and detailed insights in the distribution of microglia morphotypes across sixteen CNS regions along the rostro-caudal axis of the adult C57BL/6J mouse CNS. Although regional variations in microglia morphologies were evident, we found no evidence for male-female dimorphism at any CNS region investigated, indicating that - by and large - microglia in adult male and female mice are morphometrically indistinguishable. Taken together, our newly developed pipeline provides valuable tools for objective and unbiased identification and categorization of microglia morphotypes and can be applied to any CNS (disease) model.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Microglía , Masculino , Femenino , Ratones , Animales , Microglía/fisiología , Caracteres Sexuales , Ratones Endogámicos C57BL , Sistema Nervioso Central , Análisis por Conglomerados
8.
Glia ; 71(3): 588-601, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36377669

RESUMEN

Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Ratones , Animales , Esclerosis Múltiple/genética , Microglía/metabolismo , Esclerosis Múltiple Crónica Progresiva/genética , Ratones Biozzi , Encefalomielitis Autoinmune Experimental/metabolismo , Expresión Génica , Modelos Animales de Enfermedad
9.
Brain Behav Immun ; 107: 225-241, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36270437

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aß) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aß42 levels, and occurred well before the presence of Aß plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aß levels or Aß plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Trastornos de la Memoria/prevención & control
10.
Mol Psychiatry ; 27(11): 4731-4740, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36192459

RESUMEN

The midbrain is an extensively studied brain region in schizophrenia, in view of its reported dopamine pathophysiology and neuroimmune changes associated with this disease. Besides the dopaminergic system, the midbrain contains other cell types that may be involved in schizophrenia pathophysiology. The neurovascular hypothesis of schizophrenia postulates that both the neurovasculature structure and the functioning of the blood-brain barrier (BBB) are compromised in schizophrenia. In the present study, potential alteration in the BBB of patients with schizophrenia was investigated by single-nucleus RNA sequencing of post-mortem midbrain tissue (15 schizophrenia cases and 14 matched controls). We did not identify changes in the relative abundance of the major BBB cell types, nor in the sub-populations, associated with schizophrenia. However, we identified 14 differentially expressed genes in the cells of the BBB in schizophrenia as compared to controls, including genes that have previously been related to schizophrenia, such as FOXP2 and PDE4D. These transcriptional changes were limited to the ependymal cells and pericytes, suggesting that the cells of the BBB are not broadly affected in schizophrenia.


Asunto(s)
Barrera Hematoencefálica , Esquizofrenia , Humanos , Barrera Hematoencefálica/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Mesencéfalo/metabolismo , Dopamina/metabolismo , Análisis de Secuencia de ARN
11.
Eur J Neurosci ; 55(9-10): 2491-2518, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33724565

RESUMEN

Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro-inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress-related memory impairments.


Asunto(s)
Microglía , Plasticidad Neuronal , Glucocorticoides/metabolismo , Humanos , Trastornos de la Memoria/metabolismo , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo
12.
J Neuroinflammation ; 19(1): 111, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568856

RESUMEN

BACKGROUND: Microglia are the tissue-resident macrophages of the CNS. They originate in the yolk sac, colonize the CNS during embryonic development and form a self-sustaining population with limited turnover. A consequence of their relative slow turnover is that microglia can serve as a long-term memory for inflammatory or neurodegenerative events. METHODS: Using ATAC-, ChIP- and RNA-sequencing, we characterized the epigenomes and transcriptomes of FACS-purified microglia from mice exposed to different stimuli. A repeated endotoxin challenge (LPS) was used to induce tolerance in microglia, while genotoxic stress (DNA repair deficiency-induced accelerated aging through Ercc1 deficiency) resulted in primed (hypersensitive) microglia. RESULTS: Whereas the enrichment of permissive epigenetic marks at enhancer regions could explain training (hyper-responsiveness) of primed microglia to an LPS challenge, the tolerized response of microglia seems to be regulated by loss of permissive epigenetic marks. We identify that inflammatory stimuli and accelerated aging as a result of genotoxic stress activate distinct gene networks. These gene networks and associated biological processes are partially overlapping, which is likely driven by specific transcription factor networks, resulting in altered epigenetic signatures and distinct functional (desensitized vs. primed) microglia phenotypes. CONCLUSION: This study provides insight into epigenetic profiles and transcription factor networks associated with transcriptional signatures of tolerized and trained microglia in vivo, leading to a better understanding of innate immune memory of microglia.


Asunto(s)
Lipopolisacáridos , Microglía , Animales , Epigénesis Genética , Inmunidad Innata , Memoria Inmunológica , Lipopolisacáridos/farmacología , Ratones , Factores de Transcripción
13.
Glia ; 69(12): 2933-2946, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34409652

RESUMEN

The advent of RNA-sequencing techniques has made it possible to generate large, unbiased gene expression datasets of tissues and cell types. Several studies describing gene expression data of microglia from Alzheimer's disease or multiple sclerosis have been published, aiming to generate more insight into the role of microglia in these neurological diseases. Though the raw sequencing data are often deposited in open access databases, the most accessible source of data for scientists is what is reported in published manuscripts. We observed a relatively limited overlap in reported differentially expressed genes between various microglia RNA-sequencing studies from multiple sclerosis or Alzheimer's diseases. It was clear that differences in experimental set up influenced the number of overlapping reported genes. However, even when the experimental set up was very similar, we observed that overlap in reported genes could be low. We identified that papers reporting large numbers of differentially expressed microglial genes generally showed higher overlap with other papers. In addition, though the pathology present within the tissue used for sequencing can greatly influence microglia gene expression, often the pathology present in samples used for sequencing was underreported, leaving it difficult to assess the data. Whereas reanalyzing every raw dataset could reduce the variation that contributes to the observed limited overlap in reported genes, this is not feasible for labs without (access to) bioinformatic expertise. In this study, we thus provide an overview of data present in manuscripts and their supplementary files and how these data can be interpreted.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Esclerosis Múltiple , Análisis de Secuencia de ARN , Enfermedad de Alzheimer/patología , Humanos , Microglía/metabolismo , Esclerosis Múltiple/patología , ARN/genética
14.
Glia ; 69(4): 1053-1060, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33296111

RESUMEN

Microglia are specialized macrophages of the central nervous system (CNS) and first to react to pathogens or injury. Over the last decade, transcriptional profiling of microglia significantly contributed to our understanding of their functions. In the case of human CNS samples, either potential CNS pathology in the case of surgery samples, or a postmortem delay (PMD) due to the time needed for tissue access and collection, are potential factors that affect gene expression profiles. To determine the effect of PMD on the microglia transcriptome, we first analyzed mouse microglia, where genotype, antemortem conditions and PMD can be controlled. Microglia were isolated from mice after different PMDs (0, 4, 6, 12, and 24 hr) using fluorescence-activated cell sorting (FACS). The number of viable microglia significantly decreased with increasing PMD, but even after a 12 hr PMD, high-quality RNA could be obtained. PMD had very limited effect on mouse microglia gene expression, only 50 genes were differentially expressed between different PMDs. These genes were related to mitochondrial, ribosomal, and protein binding functions. In human microglia transcriptomes we previously generated, 31 of the 50 PMD-associated mouse genes had human homologs, and their relative expression was also affected by PMD. This study provides a set of genes that shows relative expression changes in relation to PMD, both in mouse and human microglia. Although the gene expression changes detected are subtle, these genes need to be accounted for when analyzing microglia transcriptomes generated from samples with variable PMDs.


Asunto(s)
Microglía , Transcriptoma , Animales , Autopsia , Sistema Nervioso Central , Perfilación de la Expresión Génica , Humanos , Macrófagos , Ratones
15.
Glia ; 69(5): 1140-1154, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33332631

RESUMEN

Astrocytes fulfil many functions in the central nervous system (CNS), including contribution to the blood brain barrier, synapse formation, and trophic support. In addition, they can mount an inflammatory response and are heterogeneous in morphology and function. To extensively characterize astrocyte subtypes, we FACS-isolated and gene expression profiled distinct astrocyte subtypes from three central nervous system regions; forebrain, hindbrain and spinal cord. Astrocyte subpopulations were separated based on GLAST/SLC1A3 and ACSA-2/ATP1B2 cell surface expression. The local brain environment proved key in establishing different transcriptional programs in astrocyte subtypes. Transcriptional differences between subtypes were also apparent in experimental autoimmune encephalomyelitis (EAE) mice, where these astrocyte subtypes showed distinct responses. While gene expression signatures associated with blood-brain barrier maintenance were lost, signatures involved in neuroinflammation and neurotoxicity were increased in spinal cord astrocytes, especially during acute disease stages. In chronic stages of EAE, this reactive astrocyte signature was slightly decreased, while obtaining a more proliferative profile, which might be relevant for glia scar formation and tissue regeneration. Morphological heterogeneity of astrocytes previously indicated the presence of astrocyte subtypes, and here we show diversity based on transcriptome variation associated with brain regions and differential responsiveness to a neuroinflammatory insult (EAE).


Asunto(s)
Proteínas de Transporte de Catión , Encefalomielitis Autoinmune Experimental , Adenosina Trifosfatasas , Animales , Astrocitos , Moléculas de Adhesión Celular Neuronal , Encefalomielitis Autoinmune Experimental/genética , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Médula Espinal
16.
Glia ; 69(4): 943-953, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33241604

RESUMEN

Neuromyelitis optica (NMO) is an inflammatory disease of the central nervous system (CNS) most frequently mediated by serum autoantibodies against the water channel aquaporin 4, expressed on CNS astrocytes, resulting in primary astrocytopathy. There is no cure for NMO, and treatment with Type I interferon (IFNI)-IFNß is ineffective or even detrimental. We have previously shown that both NMO lesions and associated microglial activation were reduced in mice lacking the receptor for IFNß. However, the role of microglia in NMO is not well understood. In this study, we clarify the pathomechanism for IFNI dependence of and the role of microglia in experimental NMO. Transcriptome analysis showed a strong IFNI footprint in affected CNS tissue as well as in microglial subpopulations. Treatment with IFNß led to exacerbated pathology and further microglial activation as evidenced by expansion of a CD11c+ subset of microglia. Importantly, depletion of microglia led to suppression of pathology and decrease of IFNI signature genes. Our data show a pro-pathologic role for IFNI-activated microglia in NMO and open new perspectives for microglia-targeted therapies.


Asunto(s)
Interferón Tipo I , Neuromielitis Óptica , Animales , Acuaporina 4 , Astrocitos , Ratones , Microglía , Neuromielitis Óptica/tratamiento farmacológico
17.
Glia ; 69(3): 729-745, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33068332

RESUMEN

The DNA excision repair protein Ercc1 is important for nucleotide excision, double strand DNA break, and interstrand DNA crosslink repair. In constitutive Ercc1-knockout mice, microglia display increased phagocytosis, proliferation and an enhanced responsiveness to lipopolysaccharide (LPS)-induced peripheral inflammation. However, the intrinsic effects of Ercc1-deficiency on microglia are unclear. In this study, Ercc1 was specifically deleted from Cx3cr1-expressing cells and changes in microglia morphology and immune responses at different times after deletion were determined. Microglia numbers were reduced with approximately 50% at 2-12 months after Ercc1 deletion. Larger and more ramified microglia were observed following Ercc1 deletion both in vivo and in organotypic hippocampal slice cultures. Ercc1-deficient microglia were progressively lost, and during this period, microglia proliferation was transiently increased. Ercc1-deficient microglia were gradually replaced by nondeficient microglia carrying a functional Ercc1 allele. In contrast to constitutive Ercc1-deficient mice, microglia-specific deletion of Ercc1 did not induce microglia activation or increase their responsiveness to a systemic LPS challenge. Gene expression analysis suggested that Ercc1 deletion in microglia induced a transient aging signature, which was different from a priming or disease-associated microglia gene expression profile.


Asunto(s)
Endonucleasas , Microglía , Animales , Daño del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Lipopolisacáridos/toxicidad , Ratones
18.
J Neuroinflammation ; 18(1): 57, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618716

RESUMEN

BACKGROUND: An innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal ß-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo. METHODS: Two experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array. RESULTS: Microglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1ß, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia. CONCLUSIONS: Our results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Microglía/efectos de los fármacos , Microglía/inmunología , beta-Glucanos/inmunología , Animales , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , beta-Glucanos/farmacología
19.
Acta Neuropathol ; 141(5): 681-696, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33609158

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by abnormal extracellular aggregates of amyloid-ß and intraneuronal hyperphosphorylated tau tangles and neuropil threads. Microglia, the tissue-resident macrophages of the central nervous system (CNS), are important for CNS homeostasis and implicated in AD pathology. In amyloid mouse models, a phagocytic/activated microglia phenotype has been identified. How increasing levels of amyloid-ß and tau pathology affect human microglia transcriptional profiles is unknown. Here, we performed snRNAseq on 482,472 nuclei from non-demented control brains and AD brains containing only amyloid-ß plaques or both amyloid-ß plaques and tau pathology. Within the microglia population, distinct expression profiles were identified of which two were AD pathology-associated. The phagocytic/activated AD1-microglia population abundance strongly correlated with tissue amyloid-ß load and localized to amyloid-ß plaques. The AD2-microglia abundance strongly correlated with tissue phospho-tau load and these microglia were more abundant in samples with overt tau pathology. This full characterization of human disease-associated microglia phenotypes provides new insights in the pathophysiological role of microglia in AD and offers new targets for microglia-state-specific therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino
20.
Brain ; 143(12): 3827-3841, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33155043

RESUMEN

The aetiology of late-onset neurodegenerative diseases is largely unknown. Here we investigated whether de novo somatic variants for semantic dementia can be detected, thereby arguing for a more general role of somatic variants in neurodegenerative disease. Semantic dementia is characterized by a non-familial occurrence, early onset (<65 years), focal temporal atrophy and TDP-43 pathology. To test whether somatic variants in neural progenitor cells during brain development might lead to semantic dementia, we compared deep exome sequencing data of DNA derived from brain and blood of 16 semantic dementia cases. Somatic variants observed in brain tissue and absent in blood were validated using amplicon sequencing and digital PCR. We identified two variants in exon one of the TARDBP gene (L41F and R42H) at low level (1-3%) in cortical regions and in dentate gyrus in two semantic dementia brains, respectively. The pathogenicity of both variants is supported by demonstrating impaired splicing regulation of TDP-43 and by altered subcellular localization of the mutant TDP-43 protein. These findings indicate that somatic variants may cause semantic dementia as a non-hereditary neurodegenerative disease, which might be exemplary for other late-onset neurodegenerative disorders.


Asunto(s)
Proteínas de Unión al ADN/genética , Demencia Frontotemporal/etiología , Demencia Frontotemporal/genética , Proteinopatías TDP-43/complicaciones , Proteinopatías TDP-43/genética , Empalme Alternativo , Química Encefálica/genética , ADN/genética , Exoma , Exones/genética , Femenino , Demencia Frontotemporal/psicología , Variación Genética/genética , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Semántica , Proteinopatías TDP-43/psicología , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA