Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Transl Med ; 14(1): 340, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993141

RESUMEN

BACKGROUND: The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. METHODS: Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS+ myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student's t test was used for comparison between groups in all of the experiments. RESULTS: Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b+ ly6G+ myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS+ MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7-10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. CONCLUSIONS: We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.


Asunto(s)
Citotoxicidad Inmunológica , Células Mieloides/inmunología , Virus Oncolíticos/fisiología , Virus Vaccinia/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Proliferación Celular , Células HCT116 , Humanos , Cinética , Masculino , Ratones Desnudos , Neutrófilos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Carga Tumoral
2.
Int J Cancer ; 133(12): 2989-99, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23729266

RESUMEN

Oncolytic viruses are currently in clinical trials for a variety of tumors, including high grade gliomas. A characteristic feature of high grade gliomas is their high vascularity and treatment approaches targeting tumor endothelium are under investigation, including bevacizumab. The aim of this study was to improve oncolytic viral therapy by combining it with ionizing radiation and to radiosensitize tumor vasculature through a viral encoded anti-angiogenic payload. Here, we show how vaccinia virus-mediated expression of a single-chain antibody targeting VEGF resulted in radiosensitization of the tumor-associated vasculature. Cell culture experiments demonstrated that purified vaccinia virus encoded antibody targeting VEGF reversed VEGF-induced radioresistance specifically in endothelial cells but not tumor cells. In a subcutaneous model of U-87 glioma, systemically administered oncolytic vaccinia virus expressing anti-VEGF antibody (GLV-1h164) in combination with fractionated irradiation resulted in enhanced tumor growth inhibition when compared to nonanti-VEGF expressing oncolytic virus (GLV-1h68) and irradiation. Irradiation of tumor xenografts resulted in an increase in VACV replication of both GLV-1h68 and GLV-1h164. However, GLV-1h164 in combination with irradiation resulted in a drastic decrease in intratumoral VEGF levels and tumor vessel numbers in comparison to GLV-1h68 and irradiation. These findings demonstrate the incorporation of an oncolytic virus expressing an anti-VEGF antibody (GLV-1h164) into a fractionated radiation scheme to target tumor cells by enhanced VACV replication in irradiated tumors as well as to radiosensitize tumor endothelium which results in enhanced efficacy of combination therapy of human glioma xenografts.


Asunto(s)
Endotelio Vascular/efectos de la radiación , Glioma/terapia , Viroterapia Oncolítica/métodos , Tolerancia a Radiación , Virus Vaccinia/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Glioma/irrigación sanguínea , Humanos , Masculino , Ratones , Factor A de Crecimiento Endotelial Vascular/fisiología
3.
J Transl Med ; 11: 79, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23531320

RESUMEN

BACKGROUND: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. METHODS: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. RESULTS: In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke's type A-stage HCT-116 and Duke's type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. CONCLUSION: The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression.


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Vaccinia/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Chlorocebus aethiops , Progresión de la Enfermedad , Humanos , Inyecciones Intravenosas , Macrófagos/metabolismo , Masculino , Ratones , Ratones Desnudos , Microscopía Fluorescente , Trasplante de Neoplasias
4.
PLoS One ; 7(5): e37239, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615950

RESUMEN

Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.


Asunto(s)
Neoplasias de los Músculos/veterinaria , Viroterapia Oncolítica/métodos , Sarcoma/veterinaria , Neoplasias de los Tejidos Blandos/veterinaria , Virus Vaccinia/fisiología , Animales , Neoplasias Óseas/secundario , Neoplasias Óseas/veterinaria , Línea Celular Tumoral , Perros , Ratones , Neoplasias de los Músculos/terapia , Virus Oncolíticos/fisiología , Sarcoma/patología , Sarcoma/terapia , Neoplasias de los Tejidos Blandos/terapia , Replicación Viral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Oncol ; 2010: 736907, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20631910

RESUMEN

Canine mammary carcinoma is a highly metastatic tumor that is poorly responsive to available treatment. Therefore, there is an urgent need to identify novel agents for therapy of this disease. Recently, we reported that the oncolytic vaccinia virus GLV-1h68 could be a useful tool for therapy of canine mammary adenoma in vivo. In this study we analyzed the therapeutic effect of GLV-1h68 against canine mammary carcinoma. Cell culture data demonstrated that GLV-1h68 efficiently infected and destroyed cells of the mammary carcinoma cell line MTH52c. Furthermore, after systemic administration, this attenuated vaccinia virus strain primarily replicated in canine tumor xenografts in nude mice. Finally, infection with GLV-1h68 led to strong inflammatory and oncolytic effects resulting in significant growth inhibition of the tumors. In summary, the data showed that the GLV-1h68 virus strain has promising potential for effective treatment of canine mammary carcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA