Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11705, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474526

RESUMEN

Himalayan lakes represent critical water resources, culturally important waterbodies, and potential hazards. Some of these lakes experience dramatic water-level changes, responding to seasonal monsoon rains and post-monsoonal draining. To address the paucity of direct observations of hydrology in retreating mountain glacial systems, we describe a field program in a series of high altitude lakes in Sagarmatha National Park, adjacent to Ngozumba, the largest glacier in Nepal. In situ observations find extreme (>12 m) seasonal water-level changes in a 60-m deep lateral-moraine-dammed lake (lacking surface outflow), during a 16-month period, equivalent to a 5 [Formula: see text] m[Formula: see text] volume change annually. The water column thermal structure was also monitored over the same period. A hydraulic model is constructed, validated against observed water levels, and used to estimate hydraulic conductivities of the moraine soils damming the lake and improves our understanding of this complex hydrological system. Our findings indicate that lake level compared to the damming glacier surface height is the key criterion for large lake fluctuations, while lakes lying below the glacier surface, regulated by surface outflow, possess only minor seasonal water-level fluctuations. Thus, lakes adjacent to glaciers may exhibit very different filling/draining dynamics based on presence/absence of surface outflows and elevation relative to retreating glaciers, and consequently may have very different fates in the next few decades as the climate warms.

2.
Science ; 365(6451): 369-374, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31346063

RESUMEN

Ice loss from the world's glaciers and ice sheets contributes to sea level rise, influences ocean circulation, and affects ecosystem productivity. Ongoing changes in glaciers and ice sheets are driven by submarine melting and iceberg calving from tidewater glacier margins. However, predictions of glacier change largely rest on unconstrained theory for submarine melting. Here, we use repeat multibeam sonar surveys to image a subsurface tidewater glacier face and document a time-variable, three-dimensional geometry linked to melting and calving patterns. Submarine melt rates are high across the entire ice face over both seasons surveyed and increase from spring to summer. The observed melt rates are up to two orders of magnitude greater than predicted by theory, challenging current simulations of ice loss from tidewater glaciers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA