Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 16: 71, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26858029

RESUMEN

BACKGROUND: Extensive research has increased our understanding of the molecular alterations needed for non-small cell lung cancer (NSCLC) development. Deregulation of a pathway including MYCN, HMGA2 and CDKN2A, with the participation of DICER1, is of importance in several solid tumours, and may also be of significance in the pathogenesis of NSCLC. METHODS: Gene expression of MYCN, HMGA2, CDKN2A and DICER1 were investigated with RT-qPCR in surgically resected NSCLC tumour tissue from 175 patients. Expression of the let-7 microRNA family was performed in 78 adenocarcinomas and 16 matching normal lung tissue samples using microarrays. The protein levels of HMGA2 were determined by immunohistochemistry in 156 tumour samples and the protein expression was correlated with gene expression. Associations between clinical data, including time to recurrence, and expression of mRNA, protein and microRNAs were analysed. RESULTS: Compared to adenocarcinomas, squamous cell carcinomas had a median 5-fold increase in mRNA expression of HMGA2 (p = 0.003). A positive correlation (r = 0.513, p < 0.010) between HMGA2 mRNA expression and HMGA2 protein expression was seen. At the protein level, 90% of the squamous cell carcinomas expressed high levels of the HMGA2 protein compared to 47% of the adenocarcinomas (p < 0.0001). MYCN was positively correlated with HMGA2 (p < 0.010) and DICER1 mRNA expression (p < 0.010), and the expression of the let-7 microRNAs seemed to be correlated with the genes studied. MYCN expression was associated with time to recurrence in multivariate survival analyses (p = 0.020). CONCLUSIONS: A significant difference in HMGA2 mRNA expression between the histological subtypes of NSCLC was seen with a higher expression in the squamous cell carcinomas. This was also found at the protein level, and we found a good correlation between the mRNA and the protein expression of HMGA2. Moreover, the expression of MYCN, HMGA2, and DICER1 seems to be correlated to each other and the expression of the let7-genes impacted by their expression. MYCN gene expression seems to be of importance in time to recurrence in this patient cohort with resected NSCLC.


Asunto(s)
Adenocarcinoma/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , ARN Helicasas DEAD-box/biosíntesis , Proteína HMGA2/biosíntesis , MicroARNs/biosíntesis , Proteínas Nucleares/biosíntesis , Proteínas Oncogénicas/biosíntesis , Ribonucleasa III/biosíntesis , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , ARN Helicasas DEAD-box/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteína HMGA2/genética , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Proteína Proto-Oncogénica N-Myc , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , ARN Mensajero/biosíntesis , Ribonucleasa III/genética , Análisis de Supervivencia
2.
Adv Radiat Oncol ; 3(2): 130-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29904737

RESUMEN

PURPOSE: Radiation therapy effectively kills cancer cells and elicits local effects in the irradiated tissue. The aim of this study was to investigate the kinetics of cytokines in the serum of patients with lung cancer undergoing radiation therapy and to identify associations with metabolic tumor burden as determined by 2-deoxy-2-fluoro-D-glucose (18F-FDG) positron emission tomography (PET). METHODS AND MATERIALS: Forty-five patients with advanced non-small cell lung cancer were included in a phase 2 clinical trial and randomized between fractionated thoracic radiation therapy alone or concurrent with an epidermal growth factor receptor inhibitor. Blood was sampled at 4 different time points: prior to treatment, midtherapy, at the end of therapy, and 6 to 8 weeks after the start of treatment. The serum concentrations of 48 cytokines and 9 matrix metalloproteinases were measured with multiplex immunoassays. A subset of patients was examined by 18F-FDG PET/computed tomography before, during, and after radiation therapy. The maximum standardized uptake values (SUVmax) of the primary lung tumor, whole-body metabolic tumor volume, and total lesion glycolysis were calculated, and correlations between the PET parameters and cytokines were investigated. RESULTS: The SUVmax decreased from baseline through midtherapy to posttherapy 18F-FDG PET/computed tomography (P = .018). The serum levels of C-C motif chemokine ligand (CCL) 23, CCL24, C-X3-C motif chemokine ligand 1, and interleukin-8 (C-X-C motif ligand [CXCL]8) were significantly correlated to SUVmax, metabolic tumor volume, and total lesion glycolysis before, during, and after radiation therapy. CXCL2 (P = .030) and CXCL6 (P = .010) decreased after the start of therapy and changed significantly across the sample time points. Serum concentrations of CCL15 (P = .031), CXCL2 (P = .028), and interleukin-6 (P = .007) were positively correlated to the irradiated volume during the second week of treatment. CONCLUSIONS: Cytokine serum levels vary and correlate with metabolic tumor burden in patients with advanced non-small cell lung cancer undergoing palliative thoracic radiation therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA