Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 26(7): 107068, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534178

RESUMEN

Within the adult mammalian dentate gyrus (DG) of the hippocampus, glutamate stimulates neural stem cell (NSC) self-renewing proliferation, providing a link between adult neurogenesis and local circuit activity. Here, we show that glutamate-induced self-renewal of adult DG NSCs requires glutamate transport via excitatory amino acid transporter 1 (EAAT1) to stimulate lipogenesis. Loss of EAAT1 prevented glutamate-induced self-renewing proliferation of NSCs in vitro and in vivo, with little role evident for canonical glutamate receptors. Transcriptomics and further pathway manipulation revealed that glutamate simulation of NSCs relied on EAAT1 transport-stimulated lipogenesis. Our findings demonstrate a critical, direct role for EAAT1 in stimulating NSCs to support neurogenesis in adulthood, thereby providing insights into a non-canonical mechanism by which NSCs sense and respond to their niche.

2.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387845

RESUMEN

Inducible Cre recombinase facilitates temporal control of genetic recombination in numerous transgenic model systems, a feature which has made it a popular tool for adult neurogenesis studies. One of the most common forms of inducible Cre, CreERT2, requires activation by the selective estrogen receptor modulator tamoxifen (TAM) to initiate recombination of LoxP-flanked sequences. To date, most studies deliver TAM via intraperitoneal injection. But the introduction of TAM-infused commercial chows has recently expanded the possible modes of TAM delivery. Despite the widespread use of TAM-inducible genetic models in adult neurogenesis research, the comparative efficiency and off-target effects of TAM administration protocols is surprisingly infrequently studied. Here, we compare a standard, 5 d TAM injection regimen with voluntary consumption of TAM-infused chow. First, we used adult NestinCreERT2;Rosa-LoxP-STOP-LoxP-EYFP reporter mice to show that two weeks of TAM chow and 5 d of injections led to LoxP recombination in a similar phenotypic population of neural stem and progenitor cells (NSPCs) in the adult dentate gyrus. However, TAM chow resulted in substantially less overall recombination than injections. TAM administration also altered adult neurogenesis, but in different ways depending on administration route: TAM injection disrupted neural progenitor cell proliferation three weeks after TAM, whereas TAM chow increased neuronal differentiation of cells generated during the diet period. These findings provide guidance for selection of TAM administration route and appropriate controls in adult neurogenesis studies using TAM-inducible Cre mice. They also highlight the need for better understanding of off-target effects of TAM in other neurologic processes and organ systems.


Asunto(s)
Células-Madre Neurales , Tamoxifeno , Animales , Femenino , Hipocampo , Masculino , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA