Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ecol Lett ; 26(1): 147-156, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36450612

RESUMEN

An individual's fitness cost associated with environmental change likely depends on the rate of adaptive phenotypic plasticity, and yet our understanding of plasticity rates in an ecological and evolutionary context remains limited. We provide the first quantitative synthesis of existing plasticity rate data, focusing on acclimation of temperature tolerance in ectothermic animals, where we demonstrate applicability of a recently proposed analytical approach. The analyses reveal considerable variation in plasticity rates of this trait among species, with half-times (how long it takes for the initial deviation from the acclimated phenotype to be reduced by 50% when individuals are shifted to a new environment) ranging from 3.7 to 770.2 h. Furthermore, rates differ among higher taxa, being higher for amphibians and reptiles than for crustaceans and fishes, and with insects being intermediate. We argue that a more comprehensive understanding of phenotypic plasticity will be attained through increased focus on the rate parameter.


Asunto(s)
Aclimatación , Temperatura , Animales , Aclimatación/fisiología , Fenotipo , Reptiles/fisiología , Anfibios/fisiología , Crustáceos/fisiología , Peces/fisiología
2.
J Evol Biol ; 36(2): 424-431, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36484596

RESUMEN

When comparing somatic growth thermal performance curves (TPCs), higher somatic growth across experimental temperatures is often observed for populations originating from colder environments. Such countergradient variation has been suggested to represent adaptation to seasonality, or shorter favourable seasons in colder climates. Alternatively, populations from cold climates may outgrow those from warmer climates at low temperature, and vice versa at high temperature, representing adaptation to temperature. Using modelling, we show that distinguishing between these two types of adaptation based on TPCs requires knowledge about (i) the relationship between somatic growth rate and population growth rate, which in turn depends on the scale of somatic growth (absolute or proportional), and (ii) the relationship between somatic growth rate and mortality rate in the wild. We illustrate this by quantifying somatic growth rate TPCs for three populations of Daphnia magna where population growth scales linearly with proportional somatic growth. For absolute somatic growth, the northern population outperformed the two more southern populations across temperatures, and more so at higher temperatures, consistent with adaptation to seasonality. In contrast, for the proportional somatic growth TPCs, and hence population growth rate, TPCs tended to converge towards the highest temperatures. Thus, if the northern population pays an ecological mortality cost of rapid growth in the wild, this may create crossing population growth TPCs consistent with adaptation to temperature. Future studies within this field should be more explicit in how they extrapolate from somatic growth in the lab to fitness in the wild.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Temperatura , Calor , Frío
3.
Glob Chang Biol ; 28(18): 5337-5345, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35729070

RESUMEN

With rapid and less predictable environmental change emerging as the 'new norm', understanding how individuals tolerate environmental stress via plastic, often reversible changes to the phenotype (i.e., reversible phenotypic plasticity, RPP), remains a key issue in ecology. Here, we examine the potential for better understanding how organisms overcome environmental challenges within their own lifetimes by scrutinizing a somewhat overlooked aspect of RPP, namely the rate at which it can occur. Although recent advances in the field provide indication of the aspects of environmental change where RPP rates may be of particular ecological relevance, we observe that current theoretical models do not consider the evolutionary potential of the rate of RPP. Whilst recent theory underscores the importance of environmental predictability in determining the slope of the evolved reaction norm for a given trait (i.e., how much plasticity can occur), a hitherto neglected possibility is that the rate of plasticity might be a more dynamic component of this relationship than previously assumed. If the rate of plasticity itself can evolve, as empirical evidence foreshadows, rates of plasticity may have the potential to alter the level predictability in the environment as perceived by the organism and thus influence the slope of the evolved reaction norm. However, optimality in the rate of phenotypic plasticity, its evolutionary dynamics in different environments and influence of constraints imposed by associated costs remain unexplored and may represent fruitful avenues of exploration in future theoretical and empirical treatments of the topic. We conclude by reviewing published studies of RPP rates, providing suggestions for improving the measurement of RPP rates, both in terms of experimental design and in the statistical quantification of this component of plasticity.


Asunto(s)
Adaptación Fisiológica , Ambiente , Evolución Biológica , Modelos Teóricos , Fenotipo
4.
Proc Biol Sci ; 287(1924): 20200189, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32228409

RESUMEN

When a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the process of acclimation. While acclimation has been studied for more than half a century, global environmental change has stimulated renewed interest in quantifying variation in the rate and capacity with which this process occurs, particularly among ectothermic organisms. Yet, despite the likely ecological importance of acclimation capacity and rate, how these traits change throughout life among members of the same species is largely unstudied. Here we investigate these relationships by measuring the acute heat tolerance of the clonally reproducing zooplankter Daphnia magna of different size/age and acclimation status. The heat tolerance of individuals completely acclimated to relatively warm (28°C) or cool (17°C) temperatures diverged during development, indicating that older, larger individuals had a greater capacity to increase heat tolerance. However, when cool acclimated individuals were briefly exposed to the warm temperature (i.e. were 'heat-hardened'), it was younger, smaller animals with less capacity to acclimate that were able to do so more rapidly because they obtained or came closer to obtaining complete acclimation of heat tolerance. Our results illustrate that within a species, individuals can differ substantially in how rapidly and by how much they can respond to environmental change. We urge greater investigation of the intraspecific relationship between acclimation and development along with further consideration of the factors that might contribute to these enigmatic patterns of phenotypic variation.


Asunto(s)
Aclimatación/fisiología , Daphnia/fisiología , Animales , Frío , Temperatura , Termotolerancia , Zooplancton
5.
Proc Biol Sci ; 287(1930): 20201069, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32605517

RESUMEN

Expression of adaptive reaction norms of life-history traits to spatio-temporal variation in food availability is crucial for individual fitness. Yet little is known about the neural signalling mechanisms underlying these reaction norms. Previous studies suggest a role for the dopamine system in regulating behavioural and morphological responses to food across a wide range of taxa. We tested whether this neural signalling system also regulates life-history reaction norms by exposing the zooplankton Daphnia magna to both dopamine and the dopamine reuptake inhibitor bupropion, an antidepressant that enters aquatic environments via various pathways. We recorded a range of life-history traits across two food levels. Both treatments induced changes to the life-history reaction norm slopes. These were due to the effects of the treatments being more pronounced at restricted food ration, where controls had lower somatic growth rates, higher age and larger size at maturation. This translated into a higher population growth rate (r) of dopamine and bupropion treatments when food was restricted. Our findings show that the dopamine system is an important regulatory mechanism underlying life-history trait responses to food abundance and that bupropion can strongly influence the life history of aquatic species such as D. magna. We discuss why D. magna do not evolve towards higher endogenous dopamine levels despite the apparent fitness benefits.


Asunto(s)
Daphnia/fisiología , Dopamina/metabolismo , Animales , Evolución Biológica , Alimentos , Rasgos de la Historia de Vida , Reproducción , Zooplancton
6.
Ecotoxicology ; 29(4): 485-492, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32297060

RESUMEN

Experiments examining mercury (Hg) toxicity in Daphnia are usually conducted in highly standardized conditions that prevent the formation of biofilm. Although such standardization has many advantages, extrapolation of results to natural conditions and inference of ecological effects is challenging. This is especially true since biofilms can accumulate metals/metalloids and play a key role in their transfer to higher trophic level organisms. In this study, we experimentally tested the effects of spontaneously appearing biofilm in Daphnia cultures on accumulation of Hg and its natural antagonist selenium (Se) in Daphnia magna. We added Hg (in the form of mercury (II) chloride) at two concentrations (0.2 µg/L and 2 µg/L) to experimental microcosms and measured the uptake of Hg and Se by D. magna in the presence and absence of biofilm. To test for consistent and replicable results, we ran two identical experimental sets one week apart. Biofilm presence significantly reduced the accumulation of Hg, while increasing the tissue Se content in D. magna, and these findings were reproducible across experimental sets. These findings indicate that highly standardized tests may not be adequate to predict the bioaccumulation and potential toxicity of metals/metalloids under natural conditions.


Asunto(s)
Biopelículas/efectos de los fármacos , Daphnia/metabolismo , Mercurio/metabolismo , Selenio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Biopelículas/crecimiento & desarrollo
7.
Glob Chang Biol ; 25(6): 1893-1894, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30779405

RESUMEN

The capacity of organisms to acclimate will influence their ability to cope with ongoing global changes in thermal regimes. Here we highlight methodological issues associated with recent attempts to quantify variation in acclimation capacity among taxa and environments, and describe how these may introduce bias to conclusions. We then propose a measure of thermal acclimation capacity that more directly quantifies the process of acclimation. Future studies of variation in acclimation capacity should critically evaluate whether their chosen empirical metric accurately reflects the theoretical concept of acclimation.


Asunto(s)
Aclimatación
8.
J Exp Biol ; 222(Pt 7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30910836

RESUMEN

Metabolic rate (MR) often scales with body mass (BM) following a power function of the form MR=aBM b , where log(a) is the allometric intercept and b is the allometric exponent (i.e. slope on a log-log scale). The variational properties of b have been debated, but very few studies have tested for genetic variance in b, and none have tested for a genotype-by-environment (G×E) interaction in b Consequently, the short-term evolutionary potentials of both b and its phenotypic plasticity remain unknown. Using 10 clones of a population of Daphnia magna, we estimated the genetic variance in b and assessed whether a G×E interaction affected b We measured MR on juveniles of different sizes reared and measured at three temperatures (17, 22 and 28°C). Overall, b decreased with increasing temperature. We found no evidence of genetic variance in b at any temperature, and thus no G×E interaction in b However, we found a significant G×E interaction in size-specific MR. Using simulations, we show how this G×E interaction can generate genetic variation in the ontogenetic allometric slope of animals experiencing directional changes in temperature during growth. This suggests that b can evolve despite having limited genetic variation at constant temperatures.


Asunto(s)
Metabolismo Basal/fisiología , Daphnia/genética , Daphnia/metabolismo , Temperatura , Adaptación Fisiológica , Animales , Tamaño Corporal , Daphnia/anatomía & histología , Daphnia/crecimiento & desarrollo , Genotipo , Consumo de Oxígeno
9.
J Evol Biol ; 31(7): 936-943, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29701882

RESUMEN

Theoretical models on the evolution of phenotypic plasticity predict a zone of canalization where reaction norms cross, and genetic variation is minimized in the environment a population most frequently encounter. Empirical tests of this prediction are largely missing, in particular for life-history traits. We addressed this prediction by quantifying thermal reaction norms of three life-history traits (somatic growth rate, age and size at maturation) of a Norwegian population of Daphnia magna and testing for the occurrence of an intermediate temperature (Tm ) at which genetic variance in the traits is minimized. Size at maturation changed relatively little with temperature compared to the other traits, and there was no genetic variance in the shape of the reaction norm. Consequently, age at maturation and somatic growth rate were strongly negatively correlated. Both traits showed a strong genotype-environment interaction, and the estimated Tm was 14 °C for both age at maturation and growth rate. This value of Tm corresponds well with mean summer temperatures experienced by the population and suggests that the population has evolved under stabilizing selection in temperatures that fluctuate around this mean temperature. These results suggest local adaptation to temperature in the studied population and allow predicting evolutionary trajectories of thermal reaction norms under changing thermal regimes.


Asunto(s)
Evolución Biológica , Daphnia/crecimiento & desarrollo , Daphnia/genética , Modelos Biológicos , Animales , Ambiente , Variación Genética , Genotipo , Temperatura
10.
J Exp Biol ; 221(Pt 17)2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30012577

RESUMEN

We present a method for automating the measurement of upper thermal limits in small aquatic organisms. Upper thermal limits are frequently defined by the cessation of movement at high temperature, with measurement being performed by manual observation. Consequently, estimates of upper thermal limits may be subject to error and bias, both within and among observers. Our method utilises video-based tracking software to record the movement of individuals when exposed to high, lethal temperatures. We develop an algorithm in the R computing language that can objectively identify the loss of locomotory function from tracking data. Using independent experimental data, we validate our approach by demonstrating the expected response in upper thermal limits to acclimation temperature.


Asunto(s)
Organismos Acuáticos/fisiología , Daphnia/fisiología , Fisiología/métodos , Aclimatación/fisiología , Animales , Femenino , Calor , Hidrobiología/métodos , Zoología/métodos
11.
J Anim Ecol ; 85(4): 1070-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26970102

RESUMEN

Population density has recently been suggested to be an important factor influencing metabolic rates and to represent an important 'third axis' explaining variation beyond that explained by body mass and temperature. In situations where population density influences food consumption, the immediate effect on metabolism acting through specific dynamic action (SDA), and downregulation due to fasting over longer periods, is well understood. However, according to a recent review, previous studies suggest a more general effect of population density per se, even in the absence of such effects. It has been hypothesized that this results from animals performing anticipatory responses (i.e. reduced activity) to expected declines in food availability. Here, we test the generality of this finding by measuring density effects on metabolic rates in 10 clones from two different species of the zooplankton Daphnia (Daphnia pulex Leydig and D. magna Straus). Using fluorescence-based respirometry, we obtain high-precision measures of metabolism. We also identify additional studies on this topic that were not included in the previous review, compare the results and evaluate the potential for measurement bias in all previous studies. We demonstrate significant variation in mass-specific metabolism among clones within both species. However, we find no evidence for a negative relationship between population density and mass-specific metabolism. The previously reported pattern also disappeared when we extended the set of studies analysed. We discuss potential reasons for the discrepancy among studies, including two main sources of potential bias (microbial respiration and declining oxygen consumption due to reduced oxygen availability). Only one of the previous studies gives sufficient information to conclude the absence of such biases, and consistent with our results, no effect of density on metabolism was found. We conclude that population density per se does not have a general effect on mass-specific metabolic rate.


Asunto(s)
Daphnia/fisiología , Metabolismo Energético , Zooplancton/fisiología , Animales , Densidad de Población , Especificidad de la Especie
12.
Am Nat ; 183(3): 410-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24561603

RESUMEN

Genetically based variation in metabolic rates of resting animals (RMR) suggests a potential role for evolutionary adaptations, but mechanistic models yielding evolutionary predictions are lacking. Here I utilize the increasingly recognized genetic correlation between RMR and activity metabolism and propose that optimality of the former is simply an outcome of selection on the latter. I develop a model for temporally stable environmental conditions that describes how the rate of acquisition of energy that can be converted into somatic growth and reproductive output can be expressed as a function of activity metabolism. One of the parameters in the model describes how food intake depends on activity and is hence a measure of food abundance. In contrast to the previously proposed hypothesis that individuals with a high RMR are at an advantage when environmental conditions are favorable, the model predicts that the optimal RMR is highest at an intermediate food abundance.


Asunto(s)
Metabolismo Basal , Ingestión de Energía , Modelos Biológicos , Animales , Ambiente , Aptitud Genética
13.
J Anim Ecol ; 83(4): 791-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24245740

RESUMEN

Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental heterogeneity in selection patterns, but for MR, this has rarely been tested in nature. Here, we experimentally test whether the relationship between MR and performance can vary spatially by assessing survival, growth rate and movement of Atlantic salmon (Salmo salar L.) juveniles from 10 family groups differing in MR (measured as egg metabolism) that were stocked in parallel across 10 tributaries of a single watershed. The relationship between MR and relative survival and growth rate varied significantly among tributaries. Specifically, the effect of MR ranged from negative to positive for relative survival, whereas it was negative for growth rate. The association between MR and movement was positive and did not vary significantly among tributaries. These results are consistent with a fitness cost of traits associated with behavioural dominance that varies across relatively small spatial scales (within a single watershed). More generally, our results support the hypothesis that spatial heterogeneity in environmental conditions contributes to maintain within-population variation in fitness-related traits, such as MR.


Asunto(s)
Metabolismo Basal , Longevidad , Movimiento , Salmo salar/fisiología , Animales , Geografía , Óvulo/fisiología , Salmo salar/crecimiento & desarrollo , Escocia
14.
Sci Total Environ ; 895: 164984, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356764

RESUMEN

Psychiatric drugs are considered among the emerging contaminants of concern in ecological risk assessment, due to their potential to disrupt homeostasis in aquatic organisms. Bupropion is an antidepressant that acts by selective reuptake inhibition of norepinephrine and dopamine. Little is known about this compound's effects on aquatic organisms, despite being detected in significant concentrations in both water and biota close to waste-water treatment plants and densely populated areas. Dynamic Energy Budget (DEB) models are flexible mechanistic tools that can be applied to understand toxic effects and extrapolate individual responses to higher biological levels and under untested environmental conditions. In this work, we used the stdDEB-TKTD (an application of the DEB theory to ecotoxicology) approach to investigate the possible physiological mode of action of Bupropion on the model organism Daphnia magna. Next, Dynamic Energy Budget Individual-Based Models (DEB-IBM) were used to extrapolate the results to the population level and to predict the combined effects of Bupropion exposure and food availability on the daphnids. Our results revealed an increasing negative effect of this antidepressant on the reproduction and survival of the animals with increasing concentration (0.004, 0.058, 0.58 and 58 µM). At the population level, we found that even the lowest used doses of Bupropion could reduce the population density and its reproductive output. The impacts are predicted to be stronger under limited food conditions.


Asunto(s)
Bupropión , Contaminantes Químicos del Agua , Animales , Bupropión/toxicidad , Daphnia , Reproducción , Organismos Acuáticos , Antidepresivos/toxicidad , Contaminantes Químicos del Agua/toxicidad
15.
Ecol Evol ; 12(6): e9003, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784058

RESUMEN

Metabolic rate is a trait that may evolve in response to the direct and indirect effects of predator-induced mortality. Predators may indirectly alter selection by lowering prey densities and increasing resource availability or by intensifying resource limitation through changes in prey behavior (e.g., use of less productive areas). In the current study, we quantify the evolution of metabolic rate in the zooplankton Daphnia pulicaria following an invasive event by the predator Bythotrephes longimanus in Lake Mendota, Wisconsin, US. This invasion has been shown to dramatically impact D. pulicaria, causing a ~60% decline in their biomass. Using a resurrection ecology approach, we compared the metabolic rate of D. pulicaria clones originating prior to the Bythotrephes invasion with that of clones having evolved in the presence of Bythotrephes. We observed a 7.4% reduction in metabolic rate among post-invasive clones compared to pre-invasive clones and discuss the potential roles of direct and indirect selection in driving this change.

16.
FEMS Microbiol Ecol ; 98(10)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36073495

RESUMEN

It is well-documented that perturbation of the gut bacterial community can influence the reproductive rates of the host. Less is known about how natural ecological processes can change the bacterial composition in the gut and how such changes influence the reproductive rate of the host. Here, we provide novel experimental insights into such processes using the clonally reproducing water flea, Daphnia magna. A total of 20 replicate cultures were reared for 5 weeks (Phase 1) to allow for divergence of bacterial communities through stochastic processes (i.e. drift, founder effects, and/or colonization). Duplicate cultures created from each of these were reared for 21 days (Phase 2) while recording reproductive rates. There was a significant repeatability in reproductive rates between these duplicates, suggesting that divergence of the bacterial communities during Phase 1 translated into reproductive rate effects during Phase 2. This was further supported by significant differences in the relative abundance of gut bacteria (investigated by amplicon sequencing of a part of the 16S rRNA gene) between cultures with high and low reproductive rate in Phase 2. These results are consistent with the hypothesis that stochastic processes can cause natural variation in the bacterial composition in the gut, which in turn affect host reproductive rates.


Asunto(s)
Cladóceros , Microbioma Gastrointestinal , Animales , Bacterias/genética , Cladóceros/genética , Daphnia/genética , Daphnia/microbiología , ARN Ribosómico 16S/genética
17.
Ecol Evol ; 12(9): e9348, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188513

RESUMEN

Invasive predatory species are frequently observed to cause evolutionary responses in prey phenotypes, which in turn may lead to evolutionary shifts in the population dynamics of prey. Research has provided a link between rates of predation and the evolution of prey population growth in the lab, but studies from natural populations are rare. Here, we tested for evolutionary changes in population dynamics parameters of zooplankton Daphnia pulicaria following invasion by the predator Bythotrephes longimanus into Lake Kegonsa, Wisconsin, US. We used a resurrection ecological approach, whereby clones from pre- and post-invasive periods were hatched from eggs obtained in sediment cores and were used in a 3-month growth experiment. Based on these data, we estimated intrinsic population growth rates (r), the shape of density dependence (θ) and carrying capacities (K) using theta-logistic models. We found that post-invasion Daphnia maintained a higher r and K under these controlled, predation-free laboratory conditions. Evidence for changes in θ was weaker. Whereas previous experimental evolution studies of predator-prey interactions have demonstrated that genotypes that have evolved under predation have inferior competitive ability when the predator is absent, this was not the case for the Daphnia. Given that our study was conducted in a laboratory environment and the possibility for genotype-by-environment interactions, extrapolating these apparent counterintuitive results to the wild should be done with caution. However, barring such complications, we discuss how selection for reduced predator exposure, either temporally or spatially, may have led to the observed changes. This scenario suggests that complexities in ecological interactions represents a challenge when predicting the evolutionary responses of population dynamics to changes in predation pressure in natural systems.

18.
Ecol Evol ; 12(4): e8785, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386865

RESUMEN

The neurotransmitter dopamine has been shown to play an important role in modulating behavioral, morphological, and life history responses to food abundance. However, costs of expressing high dopamine levels remain poorly studied and are essential for understanding the evolution of the dopamine system. Negative maternal effects on offspring size from enhanced maternal dopamine levels have previously been documented in Daphnia. Here, we tested whether this translates into fitness costs in terms of lower starvation resistance in offspring. We exposed Daphnia magna mothers to aqueous dopamine (2.3 or 0 mg/L for the control) at two food levels (ad libitum vs. 30% ad libitum) and recorded a range of maternal life history traits. The longevity of their offspring was then quantified in the absence of food. In both control and dopamine treatments, mothers that experienced restricted food ration had lower somatic growth rates and higher age at maturation. Maternal food restriction also resulted in production of larger offspring that had a superior starvation resistance compared to ad libitum groups. However, although dopamine exposed mothers produced smaller offspring than controls at restricted food ration, these smaller offspring survived longer under starvation. Hence, maternal dopamine exposure provided an improved offspring starvation resistance. We discuss the relative importance of proximate and ultimate causes for why D. magna may not evolve toward higher endogenous dopamine levels despite the fitness benefits this appears to have.

19.
iScience ; 25(12): 105512, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36465136

RESUMEN

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the "sources of uncertainty" framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

20.
J Anim Ecol ; 80(2): 365-74, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21155770

RESUMEN

1. Timing of birth/hatching may have strong effects on offspring fitness. Breeding time is generally considered to have evolved to match offspring arrival with optimal seasonal environmental conditions, though this is rarely tested experimentally and factors shaping the relations between timing of birth and reproductive success are often poorly understood. 2. By manipulating incubation temperature of Atlantic salmon embryos, and hence controlling for maternal and genetic effects, we obtained offspring emerging from nests prior to (accelerated), during and after (decelerated) normal emergence times, and accordingly experienced widely different seasonal environmental conditions at emergence (stream temperature range 4-16 °C). The accelerated group emerged at temperatures that are generally considered to be highly sub-optimal for growth and likely imposes strong constraints on feeding and activity, and during a peak in water discharge which is expected to negatively influence habitat availability. 3. In the wild, overall mortality during the period after emergence was 79%, and was significantly affected by both release density and emergence timing. Accelerated offspring, which emerged earliest and experienced the harshest environmental conditions, had both highest survival and largest final body size. The effect was particularly strong at the high density release site, where survival of accelerated offspring was significantly higher than both the normal and decelerated groups. 4. In more controlled semi-natural environments, all developmental groups were able to perform well, but accelerated offspring had a relatively better performance than the later emerging offspring when density was high. Furthermore, the relative performance of the different groups was not sensitive to water discharge regimes (temporally stable vs. fluctuating). 5. These results suggest that the performance of offspring in relation to seasonal timing of emergence is highly affected by competitive interactions in Atlantic salmon. Although a match between phenology and optimal seasonal environmental conditions may be highly important for organisms depending on specific resources that are only available during a limited period of the season, such resources may be available in variable amounts year around for many organisms. For these, offspring success may to a larger degree be shaped by the timing of their hatching/birth relative to each other, and particularly so under high population densities.


Asunto(s)
Reproducción , Salmón/fisiología , Animales , Tamaño Corporal , Ambiente , Femenino , Masculino , Noruega , Densidad de Población , Salmón/crecimiento & desarrollo , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA