Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 614(7947): 256-261, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653456

RESUMEN

Fluctuations and stochastic transitions are ubiquitous in nanometre-scale systems, especially in the presence of disorder. However, their direct observation has so far been impeded by a seemingly fundamental, signal-limited compromise between spatial and temporal resolution. Here we develop coherent correlation imaging (CCI) to overcome this dilemma. Our method begins by classifying recorded camera frames in Fourier space. Contrast and spatial resolution emerge by averaging selectively over same-state frames. Temporal resolution down to the acquisition time of a single frame arises independently from an exceptionally low misclassification rate, which we achieve by combining a correlation-based similarity metric1,2 with a modified, iterative hierarchical clustering algorithm3,4. We apply CCI to study previously inaccessible magnetic fluctuations in a highly degenerate magnetic stripe domain state with nanometre-scale resolution. We uncover an intricate network of transitions between more than 30 discrete states. Our spatiotemporal data enable us to reconstruct the pinning energy landscape and to thereby explain the dynamics observed on a microscopic level. CCI massively expands the potential of emerging high-coherence X-ray sources and paves the way for addressing large fundamental questions such as the contribution of pinning5-8 and topology9-12 in phase transitions and the role of spin and charge order fluctuations in high-temperature superconductivity13,14.

2.
Nano Lett ; 24(23): 6865-6871, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809171

RESUMEN

All-optical switching (AOS) results in ultrafast and deterministic magnetization reversal upon single laser pulse excitation, potentially supporting faster and more energy-efficient data storage. To explore the fundamental limits of achievable bit densities in AOS, we have used soft X-ray transient grating spectroscopy to study the ultrafast magnetic response of a GdFe alloy after a spatially structured excitation with a periodicity of 17 nm. The ultrafast spatial evolution of the magnetization in combination with atomistic spin dynamics and microscopic temperature model calculations allows us to derive a detailed phase diagram of AOS as a function of both the absorbed energy density and the nanoscale excitation period. Our results suggest that the minimum size for AOS in GdFe alloys, induced by a nanoscale periodic excitation, is around 25 nm and that this limit is governed by ultrafast lateral electron diffusion and by the threshold for optical damage.

4.
Nano Lett ; 22(10): 4028-4035, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35577328

RESUMEN

Magnetic skyrmions are quasiparticles with nontrivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond time scale. Both methods, however, produce randomly arranged skyrmions, which inherently limits the precision on the location at which the skyrmions are nucleated. Here, we show that nanopatterning of the anisotropy landscape with a He+-ion beam creates well-defined skyrmion nucleation sites, thereby transforming the skyrmion localization into a deterministic process. This approach allows control of individual skyrmion nucleation as well as guided skyrmion motion with nanometer-scale precision, which is pivotal for both future fundamental studies of skyrmion dynamics and applications.

5.
Nano Lett ; 22(11): 4452-4458, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605204

RESUMEN

Ultrafast control of magnetization on the nanometer length scale, in particular all-optical switching, is key to putting ultrafast magnetism on the path toward future technological application in data storage technology. However, magnetization manipulation with light on this length scale is challenging due to the wavelength limitations of optical radiation. Here, we excite transient magnetic gratings in a GdFe alloy with a periodicity of 87 nm by the interference of two coherent femtosecond light pulses in the extreme ultraviolet spectral range. The subsequent ultrafast evolution of the magnetization pattern is probed by diffraction of a third, time-delayed pulse tuned to the Gd N-edge at a wavelength of 8.3 nm. By examining the simultaneously recorded first and second order diffractions and by performing reference real-space measurements with a wide-field magneto-optical microscope with femtosecond time resolution, we can conclusively demonstrate the ultrafast emergence of all-optical switching on the nanometer length scale.

6.
J Synchrotron Radiat ; 29(Pt 4): 969-977, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787562

RESUMEN

We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.

7.
Opt Express ; 30(21): 38424-38438, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258408

RESUMEN

Soft-x-ray holography which utilizes an optics mask fabricated in direct contact with the sample, is a widely applied x-ray microscopy method, in particular, for investigating magnetic samples. The optics mask splits the x-ray beam into a reference wave and a wave to illuminate the sample. The reconstruction quality in such a Fourier-transform holography experiment depends primarily on the characteristics of the reference wave, typically emerging from a small, high-aspect-ratio pinhole in the mask. In this paper, we study two commonly used reference geometries and investigate how their 3D structure affects the reconstruction within an x-ray Fourier holography experiment. Insight into these effects is obtained by imaging the exit waves from reference pinholes via high-resolution coherent diffraction imaging combined with three-dimensional multislice simulations of the x-ray propagation through the reference pinhole. The results were used to simulate Fourier-transform holography experiments to determine the spatial resolution and precise location of the reconstruction plane for different reference geometries. Based on our findings, we discuss the properties of the reference pinholes with view on application in soft-x-ray holography experiments.

8.
Opt Express ; 30(12): 20980-20998, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224830

RESUMEN

A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of µm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 µm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of µm-focused X-ray beams at MHz repetition rate.

9.
Opt Express ; 28(6): 8724-8733, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225491

RESUMEN

We developed a high power optical parametric chirped-pulse amplification (OPCPA) system at 2.1 µm harnessing a 500 W Yb:YAG thin disk laser as the only pump and signal generation source. The OPCPA system operates at 10 kHz with a single pulse energy of up to 2.7 mJ and pulse duration of 30 fs. The maximum average output power of 27 W sets a new record for an OPCPA system in the 2 µm wavelength region. The soft X-ray continuum generated through high harmonic generation with this driver laser can extend to around 0.55 keV, thus covering the entire water window (284 eV - 543 eV). With a repetition rate still enabling pump-probe experiments on solid samples, the system can be used for many applications.

10.
Opt Express ; 28(1): 394-404, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-32118967

RESUMEN

Singleshot polychromatic coherent diffractive imaging is performed with a high-intensity high-order harmonic generation source. The coherence properties are analyzed and several reconstructions show the shot-to-shot fluctuations of the incident beam wavefront. The method is based on a multi-step approach. First, the spectrum is extracted from double-slit diffraction data. The spectrum is used as input to extract the monochromatic sample diffraction pattern, then phase retrieval is performed on the quasi-monochromatic data to obtain the sample's exit surface wave. Reconstructions based on guided error reduction (ER) and alternating direction method of multipliers (ADMM) are compared. ADMM allows additional penalty terms to be included in the cost functional to promote sparsity within the reconstruction.

11.
Opt Lett ; 45(19): 5591-5594, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001954

RESUMEN

Direct 2D spatial-coherence measurements are increasingly gaining importance at synchrotron beamlines, especially due to present and future upgrades of synchrotron facilities to diffraction-limited storage rings. We present a method to determine the 2D spatial coherence of synchrotron radiation in a direct and particularly simple way by using the Fourier-analysis method in conjunction with curved gratings. Direct photon-beam monitoring provided by a curved grating circumvents the otherwise necessary separate determination of the illuminating intensity distribution required for the Fourier-analysis method. Hence, combining these two methods allows for time-resolved spatial-coherence measurements. As a consequence, spatial-coherence degradation effects caused by beamline optics vibrations, which is one of the key issues of state-of-the-art X-ray imaging and scattering beamlines, can be identified and analyzed.

12.
Phys Rev Lett ; 125(12): 127201, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016712

RESUMEN

We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M_{3,2} absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16 mJ/cm^{2}/pulse to 10 000 mJ/cm^{2}/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse-implying an increased XUV peak electric field-results in a reduced quenching of the resonant diffraction at the Co M_{3,2} edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples.

13.
Phys Rev Lett ; 122(15): 157202, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050542

RESUMEN

One of the key processes setting the speed of the ultrafast magnetization phenomena is the angular momentum transfer from and into the spin system. However, the way the angular momentum flows during ultrafast demagnetization and magnetization switching phenomena remains elusive so far. We report on time-resolved soft x-ray magnetic circular dichroism measurements of the ferrimagnetic GdFeCo alloy allowing us to record the dynamics of elemental spin and orbital moments at the Fe and Gd sites during femtosecond laser-induced demagnetization. We observe a complete transfer of spin and orbital angular momentum to the lattice during the first hundreds of femtoseconds of the demagnetization process.

14.
Nano Lett ; 18(6): 3449-3453, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29767985

RESUMEN

We use resonant soft X-ray holography to image the insulator-metal phase transition in vanadium dioxide with element and polarization specificity and nanometer spatial resolution. We observe that nanoscale inhomogeneity in the film results in spatial-dependent transition pathways between the insulating and metallic states. Additional nanoscale phases form in the vicinity of defects which are not apparent in the initial or final states of the system, which would be missed in area-integrated X-ray absorption measurements. These intermediate phases are vital to understand the phase transition in VO2, and our results demonstrate how resonant imaging can be used to understand the electronic properties of phase-separated correlated materials obtained by X-ray absorption.

15.
J Synchrotron Radiat ; 25(Pt 5): 1529-1540, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179194

RESUMEN

The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.

16.
Phys Chem Chem Phys ; 20(23): 16294, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29862392

RESUMEN

Retraction of 'On the enzymatic activity of catalase: an iron L-edge X-ray absorption study of the active centre' by Nora Bergmann et al., Phys. Chem. Chem. Phys., 2010, 12, 4827-4832.

17.
J Nanobiotechnology ; 15(1): 21, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327151

RESUMEN

BACKGROUND: Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. RESULTS: We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 µg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. CONCLUSIONS: Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.


Asunto(s)
Macrófagos/metabolismo , Nanopartículas del Metal/química , Plata/farmacocinética , Línea Celular , Tomografía con Microscopio Electrónico , Humanos , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
19.
Opt Express ; 24(12): 13091-100, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410328

RESUMEN

A concept to obtain a measure of the photon flux accepted by a solid sample in single-shot transmission experiments with extreme ultraviolet (XUV) or soft x-ray radiation is demonstrated. Shallow, continuously distorted gratings are used to diffract a constant fraction of the incident photons onto an extended area of a CCD detector. The signal can be tailored to fit the dynamic range of the detector, i.e. matching the scattered intensity of the studied structure of interest. Furthermore, composite grating designs that also allow for the measurement of the spatial photon distribution on the sample are demonstrated. The gratings are directly fabricated by focused ion-beam (FIB) lithography into a Si3N4 membrane that supports the actual sample layer. This allows for rapid fabrication of hundreds of samples, making the concept suitable for systematic studies in destructive single-shot measurements at free-electron laser (FEL) sources. We demonstrate relative photon flux measurements in magnetic scattering experiments with synchrotron and FEL radiation at 59.6 eV photon energy.

20.
Opt Express ; 24(2): 1840-51, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832562

RESUMEN

Ptychography is a lensless imaging technique that aims to reconstruct an object from a set of coherent diffraction patterns originating from different and partially overlapping sample illumination areas. For a successful convergence of the iterative algorithms used, the sample scan positions have to be known with very high accuracy. Here, we present a method that allows to directly encode this information in the diffraction patterns without the need of accurate position encoders. Our approach relies on combining ptychography with another coherent imaging method, namely Fourier-transform holography. We have imaged two different objects using coherent soft-X-ray illumination and investigate the influence of experimental and numerical position refinement on the reconstruction result. We demonstrate that holographically encoded positions significantly reduce the experimental and numerical requirements. Our ptychographic reconstructions cover a large field of view with diffraction-limited resolution and high sensitivity in the reconstructed phase shift and absorption of the objects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA